COSET WEIGHT ENUMERATORS AND A GREEN'S FUNCTION OVER A HAMMING SCHEME WITH APPLICATION TO CHEEGER'S CONSTANTS

GIL CHUN KIM AND DONG CHAN KIM

ABSTRACT. We show that the Hamming weight enumerators of cosets of a linear code $\mathcal C$ over $\mathbb F_q$ of length n are closely related to a discrete Green's function $\mathcal G_\beta$. Using this relation, for instance, we obtain the exact number of distinct coset weight enumerators of $\mathcal C$. As an application, we show that lower bounds of the Cheeger ratio and the Cheeger constant of $\mathcal C$ on Γ_1 can be explicitly determined by $\mathcal G_\beta$ and a coset weight enumerator value of $\mathcal C$, where Γ_1 is a distance regular graph with respect to a Hamming distance 1 over $\mathbb F_q^n$.

2010 MATHEMATICS SUBJECT CLASSIFICATION. 05C12, 05C60, 68R10. KEYWORDS AND PHRASES. Discrete Green's function, Hamming scheme,

Linear code, Coset weight enumerator, Cheeger's constant.

1. Introduction

The concept of a Green's function was introduced in a famous essay of George Green in 1728. In [4], a discrete Green's function defined on graphs is closely associated with the normalized Laplacian and is useful for solving discrete Laplace equations with boundary conditions. In [2, 3], F. Chung introduced the relationship between the PageRank and a discrete Green's function \mathcal{G}_{β} with a positive real number β . A Green's function \mathcal{G}_{β} can be explained with an inverse relation of the β -normalized Laplacian \mathcal{L}_{β} represented by a adjacency matrix.

In [9], Delsarte introduced a Hamming scheme H(n,q). A Hamming scheme H(n,q) is a P-polynomial scheme (metric scheme) [1, 9]. That is, for all i with $0 \le i \le n$, an adjacency matrix A_i with respect to the Hamming distance i can be represented by a polynomial of degree i with respect to an adjacency matrix A_1 . Equivalently, a graph Γ_1 with respect to a Hamming distance 1 is a distance regular graph. In [7], an association scheme is constructed by the distinct coset weight enumerators of a linear code \mathcal{C} over \mathbb{F}_q^n , and it turns out to be a P-polynomial scheme. It is also known that the coset weight enumerators of a linear code \mathcal{C} are closely connected with the number of distinct nonzero weights of a dual code of \mathcal{C} [6].

In this paper we show that the Hamming weight enumerators of cosets of a linear code \mathcal{C} over \mathbb{F}_q of length n are closely related to a discrete Green's function \mathcal{G}_{β} by finding an explicit expression for \mathcal{G}_{β} in terms of adjacency matrices (Theorem 2). Using this relation, for instance, we obtain the exact number of distinct coset weight enumerators of \mathcal{C} (Theorem 6). In fact, we use an $n \times (n+1)$ matrix L_{sub} for the explicit expression of \mathcal{G}_{β} . As an application, we show that lower bounds of the Cheeger ratio and the

Cheeger constant of \mathcal{C} on Γ_1 can be explicitly determined by β , $\alpha^{(0)}$ and r_0 , where $\alpha^{(0)}$ is a coset weight enumerator value of \mathcal{C} as in Definition 4, r_0 is given as in Theorem 2 and Γ_1 is a distance regular graph with respect to a Hamming distance 1 over \mathbb{F}_q^n . The Cheeger ratio and the Cheeger constant are related to the notion of PageRank by F. Chung [2].

This paper is organized as follows. In Section 2, we introduce some basic facts about the Hamming scheme H(n,q) and a discrete Green's function \mathcal{G}_{β} , and in Section 3, we introduce an $n \times (n+1)$ matrix L_{sub} . In Section 4, we find an an explicit expression of a Green's function \mathcal{G}_{β} over \mathbb{F}_q^n in terms of adjacency matrices, and we explain the relationship between a Green's function \mathcal{G}_{β} and L_{sub} . In Section 5, we show the relationship between a Green's function \mathcal{G}_{β} and the coset weight enumerators of a linear code \mathcal{C} over \mathbb{F}_q of length n. Finally, in Section 6, we obtain the lower bounds of the Cheeger ratio and the Cheeger constant of \mathcal{C} on Γ_1 in an explicit way by using the results in the sections 4 and 5.

2. Preliminaries

In this section, we introduce basic facts on Hamming scheme H(n,q) and the discrete Green's function. Let $d_H(x,y)$ be the Hamming distance over \mathbb{F}_q^n . We describe the relations by their adjacency matrices A_i $(0 \le i \le n)$ is the $q^n \times q^n$ matrix defined by

$$(A_i)_{x,y} = \begin{cases} 1, & \text{if } d_H(x,y) = i \\ 0, & \text{otherwise.} \end{cases}$$

The Bose-Mesner algebra \mathcal{A} generated by the adjacency matrices A_i , that is, $\mathcal{A} = \{\sum t_i A_i | t_0, t_1, \cdots, t_n \in \mathbb{R}\}$. Bose-Mesner algebra \mathcal{A} has a unique basis of primitive idempotent matrices E_0, E_1, \cdots, E_n , that is,

(1)
$$E_k E_l = \delta_{kl} E_k \ (k, l = 0, 1, \dots, n), \ (2) \ \sum_{i=0}^n E_i = I,$$

where δ_{kl} is the Kronecker delta. Bose-Mesner algebra \mathcal{A} have two basis $\{A_i\}$ and $\{E_i\}$. We express the one in terms of the other and we obtain

(1)
$$A_j = \sum_{i=0}^n p_j(i)E_i, \ E_j = \frac{1}{q^n} \sum_{i=0}^n q_j(i)A_i$$

where $j = 0, 1, \dots, n$. The $(n + 1) \times (n + 1)$ matrix $\mathbf{P} = (p_j(i))$ (resp. $\mathbf{Q} = (q_j(i))$) is called the first eigenmatrix (resp. second eigenmatrix) of the Hamming scheme H(n, q). They satisfy the relation $\mathbf{PQ} = \mathbf{QP} = q^n I$.

Define a transition probability matrix P by

$$P = \frac{1}{k_1} A_1,$$

where k_1 is the 1-th valency of H(n,q). For a function $f: \mathbb{F}_q^n \to \mathbb{R}$, we define a Laplace operator Δ by

$$\Delta f(x) = \frac{1}{k_1} \sum_{y \sim x} (f(x) - f(y)).$$

Then, we have $\Delta = I - P$, i.e., $\Delta = I - \frac{1}{k_1}A_1$. For all $i = 0, 1, \dots, n$, a Laplace operator Δ is symmetric since A_1 is symmetric. Then, Δ is a matrix representation of \mathcal{L} . For $j = 0, 1, \dots, n$ and orthonormal eigenfunctions ϕ_j^* , we have

$$\mathcal{L} = \sum_{j=0}^{n} \lambda_j \phi_j^* \phi_j,$$

where λ_j is an eigenvalue of \mathcal{L} . Let \mathcal{L}_{β} be the β -normalized Laplacian by $\beta I + \mathcal{L}$. For $\beta > 0$, let Green's function \mathcal{G}_{β} denote the symmetric matrix satisfying $\mathcal{L}_{\beta}\mathcal{G}_{\beta} = I$. Then we have

$$\mathcal{G}_{\beta} = \sum_{j=0}^{n} \frac{1}{\beta + \lambda_{j}} \phi_{j}^{*} \phi_{j}.$$

For $\beta > 0$, we have

$$\mathcal{G}_{\beta}(\beta I + I - P) = I,$$

i.e.,

$$\mathcal{G}_{\beta} = ((\beta + 1)I - P)^{-1}.$$

Thus, by (1) this implies that

$$\mathcal{L}_{\beta} = (\beta + 1)I - P = (\beta + 1)I - \frac{1}{k_1}A_1$$
$$= (\beta + 1)I - \frac{1}{k_1}\sum_{j=0}^{n} p_1(j)E_j.$$

Since $I = E_0 + E_1 + \cdots + E_n$, we have

$$\mathcal{L}_{\beta} = (\beta + 1)(E_0 + E_1 + \dots + E_n) - \frac{1}{k_1} (p_1(0)E_0 + p_1(1)E_1 + \dots + p_1(n)E_n)$$
$$= \sum_{i=0}^{n} \left(\beta + 1 - \frac{1}{k_1} p_1(j)\right) E_j,$$

where $\beta + 1 - \frac{1}{k_1}p_1(j)$ is an eigenvalue of \mathcal{L}_{β} . Hence, a Green's function \mathcal{G}_{β} can be expressed by

$$\mathcal{G}_{\beta} = \sum_{i=0}^{n} \left(\frac{k_1}{(\beta+1)k_1 - p_1(j)} \right) E_j.$$

Since $E_j = (1/q^n) \sum q_j(i) A_i$, the discrete Green's function \mathcal{G}_{β} is a linear combination of adjacency matrices A_i .

The follows are the notation set used in this paper.

- H(n,q): a Hamming scheme over \mathbb{F}_q^n .
- **P**: the first eigenmatrix of H(n,q).
- \mathbf{Q} : the second eigenmatrix of H(n,q).
- $p_i(i):(i,j)$ -component of **P**.
- $q_i(i):(i,j)$ -component of \mathbf{Q} .
- k_i : the valency of the *i*-th Hamming weight relation.
- $\mathcal{N}(A)$: a nullspace of a matrix A.
- $W(\mathcal{C})$: a weight enumerator of a set \mathcal{C} over \mathbb{F}_q of length n.
- $\mathbf{1}: q^n \times 1$ vector consisting of only '1'.
- Γ_1 : a graph with respect to a Hamming distance 1 over \mathbb{F}_q^n

3. A REDUCTION MATRIX L_{sub} ON \mathcal{L}_{β}

Now, we introduce a $n \times (n+1)$ matrix L_{sub} obtained from \mathcal{L}_{β} . In fact, L_{sub} has information about the discrete Green's function \mathcal{G}_{β} . L_{sub} obtained by Step1, Step2, Step3 and Step4 as the following.

Let L be a $(q^n-1)\times q^n$ matrix obtained by the removal of the first row of \mathcal{L}_{β} . Then we have the rank of L is q^n-1 , and the nullity is 1 since \mathcal{G}_{β} has the inverse matrix. A basis of the nullspace of L can be induced from r_k 's which are coefficients of A_k in \mathcal{G}_{β} . Let $\mathcal{G}_{\beta}^{(1)}$ be the first column vector of \mathcal{G}_{β} which is arranged in order r_0, r_1, \dots, r_n . Then $\mathcal{G}_{\beta}^{(1)}$ is a $q^n \times 1$ matrix, and we have

$$L\mathcal{G}_{\beta}^{(1)} = O$$

since \mathcal{G}_{β} is orthogonal. Note that each row of \mathcal{G}_{β}^{-1} is related to the Hamming weight of its row numbers. Thus, we can rearrange the rows of L by the Hamming weight of each row number as follow steps.

Step1: Let

$$L = \begin{pmatrix} \mathbf{r}_{1 \ 1} \\ \vdots \\ \mathbf{r}_{1 \ k_1} \\ \mathbf{r}_{2 \ 1} \\ \vdots \\ \mathbf{r}_{2 \ k_2} \\ \vdots \\ \mathbf{r}_{n \ k_n} \end{pmatrix},$$

where $\mathbf{r}_{i k_i}$ is a row vector of L of Hamming weight i, and k_i is the number of row vectors of Hamming weight i.

Step2: Let

$$L' = \begin{pmatrix} \mathbf{r}_{1 & 1} \\ \mathbf{r}_{2 & 1} \\ \vdots \\ \mathbf{r}_{n & 1} \end{pmatrix}.$$

Then, L' is an $n \times q^n$ matrix. Note that the column vectors of L is arranged according to its Hamming weight in the increasing weight order. We can rewrite L' with its column vectors as follows.

$$L' = (\mathbf{c}_{0 1} \mid \mathbf{c}_{1 1} \cdots \mathbf{c}_{1 k_1} \mid \mathbf{c}_{2 1} \cdots \mathbf{c}_{2 k_2} \mid \cdots \mathbf{c}_{n k_n}),$$

where $\mathbf{c}_{i k_i}$ is a column vector of L' of Hamming weight i, and k_i is the number of column vectors of Hamming weight i.

Step3: Let

$$L'' = \begin{pmatrix} \mathbf{c}_{0 \ 1} & \sum_{i=1}^{k_1} \mathbf{c}_{1 \ i} & \sum_{i=1}^{k_2} \mathbf{c}_{2 \ i} & \cdots & \sum_{i=1}^{k_n} \mathbf{c}_{n \ i} \end{pmatrix}$$

Then, L'' is an $n \times (n+1)$ matrix.

Step4: Let
$$L_{sub} = -k_1 L''$$
 $(k_1 = n(q-1))$.

Now, we determine the entries of L_{sub} . Let $x, y \in \mathbb{F}_q^n$. For $x \in F_q^n$ with $wt_H(x) = i$, let s be the number of $y \in \mathbb{F}_q^n$ such that $wt_H(y) = j$ and

 $d_H(x,y) = 1$. Then we have :

$$s = \begin{cases} i, & j = i - 1, \\ i(q - 2), & j = i, \\ (n - i)(q - 1), & j = i + 1. \end{cases}$$

And, by the triangle inequality, s = 0 if $|i - j| \ge 2$. Since L_{sub} is determined by Step 1,2,3,4 on \mathcal{L}_{β} , thus L_{sub} is as follows:

$$L_{sub} = \begin{pmatrix} 1 & s_1 & t_1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & s_2 & t_2 & 0 & \cdots & 0 \\ 0 & 0 & 3 & s_3 & t_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & n-1 & s_{n-1} & t_{n-1} \\ 0 & 0 & 0 & \cdots & 0 & n & s_n \end{pmatrix},$$

where $s_i = i(q-2) - n(q-1)(\beta+1)$ for $i = 1, 2, \dots, n$, and $t_j = (n-j)(q-1)$ for $j = 1, 2, \dots, n-1$. It is clear that $s_{i-1} < s_i$ for $i = 1, 2, \dots, n$ and $t_{j-1} > t_j > 0$ for $j = 1, 2, \dots, n-1$. L_{sub} is $n \times (n+1)$ matrix with $\operatorname{rank}(L_{sub}) = n$. Thus $\dim \mathcal{N}(L_{sub}) = 1$.

Example 1. For $\beta > 0$, a 8×8 matrix \mathcal{L}_{β} over \mathbb{F}_2^3 is as follows:

$$\mathcal{L}_{\beta} = \begin{pmatrix} \beta+1 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0 & 0\\ -\frac{1}{3} & \beta+1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0\\ -\frac{1}{3} & 0 & \beta+1 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0\\ -\frac{1}{3} & 0 & 0 & \beta+1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0\\ 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & \beta+1 & 0 & 0 & -\frac{1}{3}\\ 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & \beta+1 & 0 & -\frac{1}{3}\\ 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & \beta+1 & -\frac{1}{3}\\ 0 & 0 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \beta+1 \end{pmatrix}.$$

Then, we obtain the following matrices L', L'' and L_{sub} respectively.

$$L' = \begin{pmatrix} -\frac{1}{3} & \beta + 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 \\ -\frac{1}{3} & 0 & \beta + 1 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 \\ -\frac{1}{3} & 0 & 0 & \beta + 1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 \\ 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & \beta + 1 & 0 & 0 & -\frac{1}{3} \\ 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & \beta + 1 & 0 & -\frac{1}{3} \\ 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & \beta + 1 & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & \beta + 1 \end{pmatrix},$$

$$L'' = \begin{pmatrix} -\frac{1}{3} & \beta + 1 & -\frac{2}{3} & 0 \\ 0 & -\frac{2}{3} & \beta + 1 & -\frac{1}{3} \\ 0 & 0 & -\frac{3}{3} & \beta + 1 \end{pmatrix},$$

$$L_{sub} = \begin{pmatrix} 1 & -3(\beta + 1) & 2 & 0 \\ 0 & 2 & -3(\beta + 1) & 1 \\ 0 & 0 & 3 & -3(\beta + 1) \end{pmatrix}.$$

4. A discrete Green's function G_{β} and L_{sub}

In this section, we show that the Green's function \mathcal{G}_{β} is determined by a basis of $\mathcal{N}(L_{sub})$. That is, the entries of \mathcal{G}_{β} are determined by a basis (u_0, u_1, \dots, u_n) of $\mathcal{N}(L_{sub})$ with $u_n = 1$.

In the following theorem, we find an explicit expression for a Green's function \mathcal{G}_{β} .

Theorem 2. Let \mathcal{G}_{β} be a Green's function over \mathbb{F}_q^n and let (u_0, u_1, \dots, u_n) be a basis of $\mathcal{N}(L_{sub})$ with $u_n = 1$. Then we have the following.

(i) A Green's function \mathcal{G}_{β} can be expressed by a linear combination of adjacency matrices A_i of \mathbb{F}_q^n for $i=0,1,2,\cdots,n$ such as $\mathcal{G}_{\beta}=r_0A_0+r_1A_1+\cdots+r_nA_n$.

(ii) (r_0, r_1, \dots, r_n) is an element of $\mathcal{N}(L_{sub})$, and $(r_0, r_1, \dots, r_n) = c(u_0, u_1, \dots, u_n)$, where

$$c = (-1)^{n+1} \frac{n(q-1)n!}{tr \left[\prod_{i=0}^{n} \binom{s_{n-i} - (n-i)t_{n-i-1}}{1} \right]}, \ t_{-1} = 0,$$
and $s_{n-i} = (n-i)(q-2) - n(q-1)(\beta+1), t_{n-i-1} = (i+1)(q-1).$
(iii) $r_i's$ satisfy that $r_0 > r_1 > \dots > r_n > 0.$

Proof. (i) Let E_i be an idempotent matrix in H(n,q). Then we have

$$E_j = \frac{1}{q^n} \sum_{i=0}^n q_j(i) A_i$$

so that, for $\beta > 0$,

$$\mathcal{G}_{\beta} = \sum_{j=0}^{n} \left(\frac{k_1}{(\beta+1)k_1 - p_1(j)} \right) E_j$$

$$= \sum_{j=0}^{n} \left(\frac{k_1}{(\beta+1)k_1 - p_1(j)} \right) \frac{1}{q^n} \sum_{i=0}^{n} q_j(i) A_i$$

$$= \frac{1}{q^n} \sum_{i=0}^{n} \sum_{j=0}^{n} q_j(i) \left(\frac{k_1}{(\beta+1)k_1 - p_1(j)} \right) A_i.$$

Hence, a Green's function \mathcal{G}_{β} can be expressed by a linear combination of A_i .

(ii) Let $\mathcal{G}_{\beta} = r_0 A_0 + r_1 A_1 + \cdots + r_n A_n$. Then each element of the first row and the first column is related to the Hamming distance from the origin O in \mathbb{F}_q^n , we obtain that the first row of \mathcal{G}_{β} is as follows:

$$\underbrace{r_0}_{\text{1 term}} \underbrace{r_1 \cdots r_1}_{k_1 \text{ terms}} \cdots \underbrace{r_n \cdots r_n}_{k_n \text{ terms}}$$

Furthermore, \mathcal{G}_{β} is a $q^n \times q^n$ matrix. Since $\mathcal{G}_{\beta} = ((\beta + 1)I - P)^{-1}$, we have

$$\mathcal{G}_{\beta}^{-1} = (\beta + 1)I - P = (\beta + 1)I - \frac{1}{k_1}A_1$$

for $\beta > 0$. Since $(\beta + 1)I - \frac{1}{k_1}A_1$ is symmetric, the first row(column) of \mathcal{G}_{β} is orthogonal to the other rows(columns) of $(\beta + 1)I - \frac{1}{k_1}A_1$. Since L is a

matrix obtained from a removal of the first row of \mathcal{G}_{β}^{-1} , there is no row whose number is a Hamming weight 0. Hence, L_{sub} has n rows. Furthermore, each row of L_{sub} has n+1 elements. Therefore, we obtain an $n \times (n+1)$ matrix L_{sub} , and we have

$$L_{sub} \begin{pmatrix} r_0 \\ r_1 \\ \vdots \\ r_n \end{pmatrix} = O_{n \times 1}.$$

Since $\mathcal{N}(L_{sub})$ is a 1-dimensional null space of L_{sub} , we have $(r_0, r_1, \dots, r_n) = c(u_0, u_1, \dots, u_n)$ for some real value c.

Now, we will determine a real value c. Let \overline{L}_{sub} be an $(n+1) \times (n+1)$ -matrix obtained from L_{sub} by adding $(s_0 \ t_0 \ 0 \ \cdots \ 0)$ as its first row, where $s_0 = -n(q-1)(\beta+1)$, and $t_0 = n(q-1)$. Since (r_0, r_1, \cdots, r_n) is orthogonal to the row vectors of L_{sub} , and L_{sub} is obtained by multiplying -n(q-1), the first column vector of $(-n(q-1))\overline{L}_{sub}^{-1}$ is (r_0, r_1, \cdots, r_n) . Therefore,

$$r_n = -n(q-1) \frac{\text{cofactor of } (1, n+1) \text{entry of } \overline{L}_{sub}}{\det(\overline{L}_{sub})},$$

where a cofactor of (1, n + 1)-entry of \overline{L}_{sub} is

$$(-1)^{2+n} \det \begin{pmatrix} 1 & s_1 & t_1 & \cdots & 0 \\ 0 & 2 & s_2 & t_2 & 0 \\ 0 & 0 & 3 & s_3 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & n \end{pmatrix} = (-1)^n \ n!.$$

Thus.

$$c = (-1)^{n+1} \frac{n(q-1)n!}{\det(\overline{L}_{sub})}.$$

Since \overline{L}_{sub} is a tridiagonal matrix, $\det(\overline{L}_{sub})$ can be evaluated via multiplication of 2×2 matrices [8].

(iii) Now, for $k=0,1,2\cdots,n$ and a coefficient r_k of A_k , we show that $r_0>r_1>\cdots>r_n>0$. We claim that $i+t_i<-s_i$ for $i=1,2,\cdots,n-1$. since $n(q-1)-i(q-2)< n(q-1)(\beta+1)-i(q-2)$, we have

$$i + t_i = i + (n - i)(q - 1)$$

$$= n(q - 1) - i(q - 2)$$

$$< n(q - 1)(\beta + 1) - i(q - 2)$$

$$= -s_i.$$

Hence, we have

$$(2) i + t_i < -s_i$$

for $i = 1, 2, \dots, n - 1$.

We find a basis of the nullspace of L_{sub} by elementary row operations.

By the Gauss-Jordan elimination, we have the following reduced row echelon form matrix:

$$L_{sub} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & S_n \\ 0 & 1 & 0 & 0 & 0 & \cdots & S_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & S_2 \\ 0 & 0 & 0 & \cdots & 0 & 1 & S_1 \end{pmatrix},$$

where $S_1 = \frac{s_n}{n}$, $S_2 = \frac{t_{n-1} - S_1 s_{n-1}}{n-1}$, and $S_i = -\frac{1}{n-i+1} \left(S_{i-1} s_{n-i+1} + S_{i-2} t_{n-i+1} \right)$ for $i = 3, 4, \dots, n$. Then, since $\beta > 0$, we have

$$S_1 = \frac{s_n}{n} = q - 2 - (q - 1)(\beta + 1) < -1.$$

We claim that $S_i < S_{i-1}$ for $i = 1, 2, \dots, n$. Note that

$$S_2 = \frac{1}{n-1}(t_{n-1} - S_1 s_{n-1}) = \frac{1}{n-1}(t_{n-1} + S_1(-s_{n-1}))$$

Since $S_1 < -1$ and $S_{n-1} < -1$, we have

$$\frac{1}{n-1}(t_{n-1}+S_1(-s_{n-1}))<\frac{1}{n-1}(t_{n-1}+S_1(n-1+t_{n-1}))$$

from (2). Since $S_1 < -1$, we have

$$S_2 < \frac{1}{n-1}(t_{n-1} + S_1(n-1+t_{n-1})) = S_1 + \frac{t_{n-1}(1+S_1)}{n-1} < S_1.$$

Suppose that $S_i < S_{i-1} < -1$ for some i. Then, form (2), we have

$$S_{i+1} = -\frac{1}{n-i}(S_i s_{n-i} + S_{i-1} t_{n-i}) = \frac{1}{n-i}(S_i (-s_{n-i}) - S_{i-1} t_{n-i})$$

$$< \frac{1}{n-i}(S_i (n-i+t_{n-i}) - S_{i-1} t_{n-i})$$

$$= S_i + t_{n-i}(\frac{S_i - S_{i-1}}{n-i}).$$

Since $S_i < S_{i-1}$, we have $S_{i+1} < S_i$. By the mathematical induction, we have

$$S_{i+1} < S_i$$

for all $i = 1, 2, \dots, n$. Hence, for a basis $(u_0, u_1, \dots, u_n)^T$ of $\mathcal{N}(L_{sub})$, we have

$$u_0 > u_1 > \dots > u_n = 1.$$

Since $\beta > 0$, we have $\det(\mathcal{L}_{\beta}) > 0$. Further, since cofactors of diagonal entries of \mathcal{L}_{β} are positive values, we have $r_0 > 0$. Therefore, we have $r_0 > r_1 > \cdots > r_{n-1} > r_n > 0$.

Example 3. Let L_{sub} be a 5×6 matrix obtained by Step 1,2,3 and 4 in Section 3. Then, L_{sub} is given by

Choosing $\beta = \frac{1}{10}$, then we obtain a basis of $\mathcal{N}(L_{sub})$ as

$$\left(\frac{152}{3}, \frac{36}{5}, \frac{8}{3}, \frac{8}{5}, \frac{6}{5}, 1\right).$$

Also, \overline{L}_{sub} is

$$\begin{pmatrix} -11 & 10 & 0 & 0 & 0 & 0 \\ 1 & -10 & 8 & 0 & 0 & 0 \\ 0 & 2 & -9 & 6 & 0 & 0 \\ 0 & 0 & 3 & -8 & 4 & 0 \\ 0 & 0 & 0 & 4 & -7 & 2 \\ 0 & 0 & 0 & 0 & 5 & -6 \end{pmatrix}$$

and $\det(\overline{L}_{sub}) = 58240$, c = 1200/58240 = 15/728. Thus,

$$(r_0, r_1, r_2, r_3, r_4, r_5) = \frac{15}{728} \left(\frac{152}{3}, \frac{36}{5}, \frac{8}{3}, \frac{8}{5}, \frac{6}{5}, 1 \right).$$

Note. (1) Let (u_0, u_1, \dots, u_n) be a basis of $\mathcal{N}(L_{sub})$ with $u_n = 1$. For all i with $i = 0, 1, \dots, n-1$, if $\beta > 0$ increases, u_i increases. Furthermore, u_i approaches 1^+ as β approaches 0^+ .

(2) [5] Let L_0 be a $n \times n$ matrix obtained by the removal of the first column of L_{sub} . Let L_i be a $(n-i) \times (n-i)$ matrix obtained by the removal from the first row(respectively, column) to the i-th row(respectively, column) of L_0 and let (u_0, u_1, \dots, u_n) be a basis of $\mathcal{N}(L_{sub})$ with $u_n = 1$. Then we have

$$u_i = (-1)^{n-i} \frac{i! \det(L_i)}{n!}, \ (i = 0, 1, \dots, n-1),$$

where $\det(L_n)$

5. A COSET WEIGHT ENUMERATOR AS A GREEN'S FUNCTION \mathcal{G}_{β}

In this section, we investigate the relationship between an a coset weight enumerator of a linear code \mathcal{C} and a Green's function \mathcal{G}_{β} . We begin, we introduce some definitions.

Definition 4. (1) Let C be a subset of \mathbb{F}_q of length n. We arrange elements of C according to their Hamming weight. Define

$$\mathcal{P}_i = \left\{ \begin{array}{ll} 1, & \textit{if } i\textit{-th element is in } \mathcal{C}, \\ 0, & \textit{if } i\textit{-th element is not in } \mathcal{C}, \end{array} \right..$$

This $q^n \times 1$ vector $\mathcal{P} = pos(\mathcal{C}) = (\mathcal{P}_i)_{1 \leq i \leq q^n}$ is called a position vector of \mathcal{C} .

(2) For a subset C of \mathbb{F}_q of length n and $y_i \in C^{-1} = \mathbb{F}_q^n - C$, let

$$S(y_i) = \{ z \mid W(C + z) = W(C + y_i), z \in C^{-1} \}$$

and t the number of the distinct set $S(y_i)$'s. Then, $\mathcal{P}^{(i)} = pos_{(i)}(\mathcal{C}^{-1})$ is the position vector of the set $S(y_i)$ for $i = 1, 2, \dots, t$, and $\mathcal{P}^{(i)}$ is called the coset position vector of \mathcal{C}^{-1} with respect to y_i .

(3) Let \mathcal{G}_{β} be a Green's function as in Theorem 2 (1). That is, $\mathcal{G}_{\beta} = r_0 A_0 + r_1 A_1 + \dots + r_n A_n$. For $z \in S(y_i)$, let $W(\mathcal{C} + z) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$, and let a value $\alpha^{(i)}$ denote $c_0 r_0 + c_1 r_1 + \dots + c_n r_n$, then $\alpha^{(i)}$ is called the coset weight enumerator value of $S(y_i)$ ($i = 1, 2, \dots, t$). Also, we define that $\alpha^{(0)}$ is a coset weight enumerator value of \mathcal{C} . That is,

$$\begin{cases} \alpha^{(0)}, & z \in \mathcal{C} \\ \alpha^{(i)}, & z \in S(y_i). \end{cases}$$

Example 5. We arrange all elements of \mathbb{F}_2^3 as 000, 100, 010, 001, 110, 101, 011, 111. Let $\mathcal{C} = \{000, 100\}$. Then the position vector of \mathcal{C} is $\mathcal{P} = pos(\mathcal{C}) = (1, 1, 0, 0, 0, 0, 0, 0)^T$. We consider a coset $\mathcal{C} + y$ for $y \in \mathcal{C}^{-1}$. Then $\mathcal{C} + y$ are $\{010, 110\}, \{001, 101\}$, and $\{011, 111\}$. Thus $\mathcal{P}^{(1)} = (0, 0, 1, 1, 1, 1, 0, 0)$, $\mathcal{P}^{(2)} = (0, 0, 0, 0, 0, 0, 1, 1)$. Moreover, $\alpha^{(0)} = r_0 + r_1$, $\alpha^{(1)} = r_1 + r_2$ and $\alpha^{(2)} = r_2 + r_3$. Now, we consider a Green's function $\mathcal{G}_{\beta} = r_0 A_0 + r_1 A_1 + r_2 A_2 + r_3 A_3$ over \mathbb{F}_2^3 as follows:

Then, $\mathcal{G}_{\beta}\mathcal{P}$ is $(\alpha^{(0)}, \alpha^{(0)}, \alpha^{(1)}, \alpha^{(1)}, \alpha^{(1)}, \alpha^{(1)}, \alpha^{(2)}, \alpha^{(2)})$. That is,

$$\mathcal{G}_{\beta}\mathcal{P} = \alpha^{(0)}\mathcal{P} + \alpha^{(1)}\mathcal{P}^{(1)} + \alpha^{(2)}\mathcal{P}^{(2)}$$

In the following theorem, we show that for a given β and a given liner code \mathcal{C} over \mathbb{F}_q of length n, the coset weight enumerator values can be uniquely expressed as a linear combination of r_i 's, where $\mathcal{G}_{\beta} = r_0 A_0 + r_1 A_1 + \cdots + r_n A_n$. Furthermore, we find the exact number of distinct coset weight enumerators of \mathcal{C} by expressing $\mathcal{G}_{\beta}\mathcal{P}$ as a linear combination of a position vector \mathcal{P} of \mathcal{C} and the coset position vectors $\mathcal{P}^{(i)}$ with coefficients $\alpha^{(i)}$.

Theorem 6. Let C be a linear code over \mathbb{F}_q of length n, and $\mathcal{P} = pos(C)$, $\mathcal{P}^{(i)} = pos_{(i)}(C^{-1})$. Let $\mathcal{G}_{\beta} = r_0A_0 + r_1A_1 + \cdots + r_nA_n$ be a Green's function over \mathbb{F}_q^n as in Theorem 2 and let $\alpha^{(i)}$ $(i = 0, 1, \cdots, t)$ be the coset weight enumerator values over \mathbb{F}_q^n . Then we have the following:

- (1) $\alpha^{(k)} = \alpha^{(l)}$ if and only if $c'_i = c''_i$ for all i, where $\alpha^{(k)} = \sum c'_i r_i$ and $\alpha^{(l)} = \sum c''_i r_i$.
- (2) There are t+1 distinict coset weight enumerators of C if and only if $\mathcal{G}_{\beta}\mathcal{P} = \alpha^{(0)}\mathcal{P} + \alpha^{(1)}\mathcal{P}^{(1)} + \cdots + \alpha^{(t)}\mathcal{P}^{(t)}$ for distinct positive $\alpha^{(i)}$, where $\mathcal{P} + \mathcal{P}^{(1)} + \cdots + \mathcal{P}^{(t)} = \mathbf{1}$.

Proof. (1) (\Rightarrow) Suppose that $\alpha^{(k)} = \alpha^{(l)}$ for some k, l. Then, we have

$$\alpha^{(k)} = c_0' r_0 + c_1' r_1 + \dots + c_n' r_n = c_0'' r_0 + c_1'' r_1 + \dots + c_n'' r_n = \alpha^{(l)}$$

for some c'_i 's and c''_i 's. This implies that

$$\begin{pmatrix} c'_0 & c'_1 & \cdots & c'_n \\ c''_0 & c''_1 & \cdots & c''_n \end{pmatrix} \begin{pmatrix} r_0 & 1 \\ r_1 & 1 \\ \vdots & \vdots \\ r_n & 1 \end{pmatrix} = \begin{pmatrix} \alpha^{(k)} & |C| \\ \alpha^{(k)} & |C| \end{pmatrix}.$$

Let $K = \begin{pmatrix} c'_0 & c'_1 & \cdots & c'_n \\ c''_0 & c''_1 & \cdots & c''_n \end{pmatrix}$, and we assume that $\operatorname{rank}(K) = 2$. Then $w = (c'_0 - c''_0, c'_1 - c''_1, \cdots, c'_n - c''_n)$ is a non-zero vector, and w is orthogonal to both $(1, 1, \cdots, 1)$ and (r_0, r_1, \cdots, r_n) . Hence, w is contained in the nullspaces of $1 \times (n+1)$ matrices $(1 \ 1 \ \cdots \ 1)$ and $(r_0 \ r_1 \ \cdots \ r_n)$, respectively, where the nullspaces of $(1 \ 1 \ \cdots \ 1)$ and $(r_0 \ r_1 \ \cdots \ r_n)$ are same to the row spaces of

$$U = \begin{pmatrix} -1 & 1 & 0 & 0 & \cdots & 0 \\ -1 & 0 & 1 & 0 & \cdots & 0 \\ -1 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & & \vdots \\ -1 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}, \text{ and } V = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & -r_0 \\ 0 & 1 & 0 & \cdots & 0 & -r_1 \\ 0 & 0 & 1 & \cdots & 0 & -r_2 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -r_{n-1} \end{pmatrix},$$

respectively. Let u_i and v_i be the *i*-th row vectors of U and V, respectively. Then, for $i=1,2,\cdots,n$, we have $u_i \not\in span\{v_1,v_2,\cdots,v_n\}$, and u_i 's are linearly independent. Suppose that $au_i+bu_j=t_1v_1+\cdots+t_nv_n$ for some i,j,a and b. If all t_i 's are 0, then we have a=b=0 since u_i 's are linearly independent. If $t_i\neq 0$ for some i, then neither a nor b is 0. Hence, there are j and k such that $b_k\neq 0$, $t_j\neq 0$, and

$$u_i = \sum_{b_k \neq 0} b_k u_k + \sum_{t_j \neq 0} t_j v_j.$$

Since $w = \sum g_i u_i$, we have

$$w = \sum_{k} g_i \left(\sum_{k_k \neq 0} b_k u_k + \sum_{t_j \neq 0} t_j v_j \right)$$
$$= \sum_{k_k \neq 0} \sum_{k_k \neq 0} g_i b_k u_k + \sum_{t_j \neq 0} \sum_{k_j \neq 0} g_i t_j v_j.$$

Since $g_ib_k \neq 0$ and $g_it_j \neq 0$ for some i, j, k, we have $w \notin span\{v_1, \dots, v_n\}$. Hence, in order that w is orthogonal to both $(1, 1, \dots, 1)$ and (r_0, r_1, \dots, r_n) , it should hold that w = O. Thus, we have $c'_0 = c''_0, c'_1 = c''_1, \dots, c'_n = c''_n$, i.e., we have rank(K) = 1, which is a contradiction. (\Leftarrow) It is obvious.

(2) (\Rightarrow) Suppose that there are t+1 distinct coset weight enumerators on \mathcal{C} . Then by (1), there exist t+1 distinct values $\alpha^{(i)}$ ($i=0,1,\cdots,t$). Since $\mathcal{G}_{\beta}=r_0A_0+r_1A_1+\cdots+r_nA_n$, by definition 4, $\mathcal{G}_{\beta}\mathcal{P}$ is a linear combination of \mathcal{P} and $\mathcal{P}^{(i)}$ ($0 \le i \le t$) with coefficients $\alpha^{(i)}$. Also, It is clear, $\mathcal{P}+\mathcal{P}^{(1)}+\mathcal{P}^{(2)}+\cdots+\mathcal{P}^{(t)}=\mathbf{1}$.

 (\Leftarrow) By (1) and definition 4, it is obvious.

Example 7. Let \mathcal{C} be a linear code over \mathbb{F}_2 of length 4 as follows:

$$\{0000, 1010, 1101, 0111\}.$$

Then, a position vector \mathcal{P} of \mathcal{C} is as follows:

$$\mathcal{P} = (1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0)^T$$

Let \mathcal{G}_{β} be a Green's function over \mathbb{F}_2^4 with $\beta = \frac{1}{4}$. Then \mathcal{G}_{β} is as follows:

$$\mathcal{G}_{\beta} = \frac{332}{315}A_0 + \frac{20}{63}A_1 + \frac{8}{45}A_2 + \frac{8}{63}A_3 + \frac{32}{315}A_4,$$

where A_i $(i = 0, 1, \dots, 4)$ are the adjacency matrices of H(4, 2). That is,

$$r_0 = \frac{332}{315}, r_1 = \frac{20}{63}, r_2 = \frac{8}{45}, r_3 = \frac{8}{63}, r_4 = \frac{32}{315}.$$

Thus, we have

$$\mathcal{G}_{\beta}\mathcal{P} = (\frac{52}{35}, \frac{32}{35}, \frac{4}{5}, \frac{32}{35}, \frac{4}{5}, \frac{4}{5}, \frac{4}{5}, \frac{52}{35}, \frac{4}{5}, \frac{4}{5}, \frac{32}{35}, \frac{4}{5}, \frac{4}{5}, \frac{52}{35}, \frac{4}{5}, \frac{52}{35}, \frac{32}{35})$$

$$= \frac{52}{35}\mathcal{P} + \frac{32}{35}\mathcal{P}^{(1)} + \frac{4}{5}\mathcal{P}^{(2)}.$$

Therefore, by Theorem 6, there are exactly three distinct coset weight enumerators of C. In fact, the cosets of C are

$$\left\{\begin{array}{c}0000\\1010\\1101\\0111\end{array}\right\}, \left\{\begin{array}{c}1000\\0010\\0101\\1111\end{array}\right\}, \left\{\begin{array}{c}0100&0001\\1110&1011\\1001&1100\\0011&0110\end{array}\right\},$$

and the coset Hamming enumerators are $1+x^2+2x^3$, $2x+x^2+x^4$, $x+2x^2+x^3$. Therefore $\mathcal{G}_{\beta}\mathcal{P}$ is $(r_0+r_2+2r_3)\mathcal{P}+(2r_1+r_2+r_4)\mathcal{P}^{(1)}+(r_1+2r_2+r_3)\mathcal{P}^{(2)}$.

For two linear codes over \mathbb{F}_q of length n with the same dimension, the following result shows the relation between their coset weight enumerator values $\alpha^{(i)}$ and their number of the distinct coset weight enumerators when $\mathcal{G}_{\beta}\mathcal{P}$ and $\mathcal{G}_{\beta}\mathcal{P}'$ are expressed as a linear combination of coset position vectors $\mathcal{P}^{(i)}$ with coefficients $\alpha^{(i)}$.

Theorem 8. Let C and C' be linear codes over \mathbb{F}_q of length n with $\dim(C) = C$ $\dim(\mathcal{C}')$, and let \mathcal{P} (resp. $\mathcal{P}^{(i)}$) and \mathcal{P}' (resp. $\mathcal{P}^{\prime(i)}$) be the position vectors (resp. coset position vectors) of C and C', respectively. For a Green's function \mathcal{G}_{β} over \mathbb{F}_q^n , suppose that

$$\mathcal{G}_{\beta}\mathcal{P} = \alpha^{(0)}\mathcal{P} + \alpha^{(1)}\mathcal{P}^{(1)} + \dots + \alpha^{(t)}\mathcal{P}^{(t)},$$

$$\mathcal{G}_{\beta}\mathcal{P}' = \alpha'^{(0)}\mathcal{P}' + \alpha'^{(1)}\mathcal{P}'^{(1)} + \dots + \alpha'^{(t)}\mathcal{P}'^{(t)}$$

Then, we have as follows:

$$(1)\sum \alpha^{(j)} \ge \sum \alpha'^{(j)} \implies t \ge l,$$

(2)
$$t < l \implies \sum \alpha^{(j)} < \sum \alpha'^{(j)}$$
,

 $(3) \sum \alpha^{(j)} = \sum \alpha'^{(j)} \iff \sum \alpha^{(j)} \ and \ \sum \alpha'^{(j)} \ have \ the \ same \ linear \ co-linear \$ mbination of r_0, r_1, \cdots, r_n

Proof. (1) Suppose that $\sum \alpha^{(j)} > \sum \alpha'^{(j)}$. Then for $\beta > 0$,

$$\sum \alpha^{(j)} = d_0 r_0 + d_1 r_1 + \dots + d_n r_n \ge d'_0 r_0 + d'_1 r_1 + \dots + d'_n r_n = \sum \alpha'^{(j)}.$$

Let $(u_0 \ u_1 \ \cdots \ u_n)$ be a basis of L_{sub} with $u_n = 1$. Then $(u_0 \ u_1 \ \cdots \ u_n) \rightarrow$ $(1,1,\cdots,1)^+$ as $\beta\to 0^+$. Therefore

$$\lim_{\beta \to 0^+} (d_0 r_0 + d_1 r_1 + \dots + d_n r_n \ge d'_0 r_0 + d'_1 r_1 + \dots + d'_n r_n)$$

$$= (d_0 + d_1 + \dots + d_n \ge d'_0 + d'_1 + \dots + d'_n).$$

Since $\sum d_i = t|\mathcal{C}|$ and $\sum d'_i = l|\mathcal{C}|$, $t|\mathcal{C}| \ge l|\mathcal{C}| \iff t \ge l$.

(2) by (1), it is obvious.

(3) (\Rightarrow) Let $\sum_{i=0}^{n} \alpha^{(j)} = \sum_{i=0}^{n} d_i r_i$ and $\sum_{i=0}^{n} \alpha^{(j)} = \sum_{i=0}^{n} d'_i r_i$. Suppose that $\sum_{i=0}^{n} \alpha^{(j)} = \sum_{i=0}^{n} \alpha^{(j)}$ for any $\beta > 0$. Then $(d_0 - d'_0, \dots, d_n - d'_n)$ is an orthogonal with (r_0, r_1, \dots, r_n) . Let $\beta_i > 0$ $(i = 0, 1, \dots, n)$ with $0 < \beta_0 < \beta_1 < \dots < \beta_n$ and let $(u_0^{(i)}, u_1^{(i)}, \dots, u_n^{(i)})$ be a basis of $\mathcal{N}(L_{sub})$ with respect to $\beta_i > 0$. Define a $(n+1) \times (n+1)$ matrix $B = (u_i^{(i)})$ as follows:

$$\begin{pmatrix} u_0^{(0)} & u_1^{(0)} & \cdots & \cdots & u_n^{(0)} \\ u_0^{(1)} & u_1^{(1)} & \cdots & \cdots & u_n^{(1)} \\ \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ u_0^{(n)} & u_1^{(n)} & \cdots & \cdots & u_n^{(n)} \end{pmatrix},$$

where $u_n^{(i)}=1$ $(i=0,1,\cdots,n)$. Since $u_0^{(i)}>u_1^{(i)}>\cdots>u_n^{(i)}=1$ and $u_j^{(0)}< u_j^{(1)}<\cdots< u_j^{(n)}$ $(i,j=0,1,\cdots,n,\ j\neq n),\ B$ is an invertible matrix. That is, ${\rm rank}(B)=n+1$. Since a nullspace of (d_0-d_0',\cdots,d_n-1)

 d'_n) is a n-dimensional space, $(d_0-d'_0,\cdots,d_n-d'_n)$ is not orthogonal with (r_0,r_1,\cdots,r_n) for some $\beta>0$. Therefore $(d_0-d'_0,\cdots,d_n-d'_n)=O$, that is, $\sum \alpha^{(j)}$ and $\sum \alpha'^{(j)}$ have the same linear combination of r_0,r_1,\cdots,r_n . (\Leftarrow) It is obvious.

Example 9. Let C_i (i=1,2) be a linear codes over \mathbb{F}_2 of length 5 as follows .

$$C_1 = \{00000, 10000\}, C_2 = \{00000, 01111\}.$$

And let \mathcal{P} (resp. $\mathcal{P}^{(i)}$) and \mathcal{P}' (resp. $\mathcal{P}'^{(i)}$) be the position vectors (resp. coset position vectors) of \mathcal{C}_1 , \mathcal{C}_2 , respectively. Then a coset enumerators of \mathcal{C}_1 and \mathcal{C}_2 are

$$1+x$$
, $x+x^2$, x^2+x^3 , x^3+x^4 , x^4+x^5
 $1+x^4$, $x+x^5$, $x+x^3$, x^2+x^4 , $2x^2$, $2x^3$

respectively. Thus we have

$$\mathcal{G}_{\beta}\mathcal{P} = (r_0 + r_1)\mathcal{P} + (r_1 + r_2)\mathcal{P}^{(1)} + (r_2 + r_3)\mathcal{P}^{(2)} + (r_3 + r_4)\mathcal{P}^{(3)} + (r_4 + r_5)\mathcal{P}^{(4)},$$

$$\mathcal{G}_{\beta}\mathcal{P}' = (r_0 + r_4)\mathcal{P}' + (r_1 + r_5)\mathcal{P}'^{(1)} + (r_1 + r_3)\mathcal{P}'^{(2)} + (r_2 + r_4)\mathcal{P}'^{(3)} + (2r_2)\mathcal{P}'^{(4)} + (2r_3)\mathcal{P}'^{(5)}.$$

Therefore, we obtain

$$\sum \alpha^{(j)} = r_0 + 2r_1 + 2r_2 + 2r_3 + 2r_4 + r_5,$$
$$\sum \alpha'^{(j)} = r_0 + 2r_1 + 3r_2 + 3r_3 + 2r_4 + r_5.$$

Since $r_0 > r_1 > r_2 > \cdots > r_n > 0$, $\sum \alpha^{(j)} < \sum \alpha'^{(j)}$. And the numbers of distinct coset weight enumerators of \mathcal{C} and \mathcal{C}' are 5 and 6 respectively.

Example 9 shows that if $\sum \alpha^{(j)} > \sum \alpha'^{(j)}$, then t > l. However, it is not true in general. Example 10 shows this case that t = l but $\sum \alpha^{(j)} \neq \sum \alpha'^{(j)}$.

Example 10. Let C_i (i = 1, 2, 3) be a linear codes over \mathbb{F}_2 of length 5 as follows:

$$C_1 = \{00000, 10110, 11101, 01011\},\$$
 $C_2 = \{00000, 10000, 01000, 11000\},\$
 $C_3 = \{00000, 11000, 00111, 11111\},\$

And let \mathcal{P},\mathcal{P}' and \mathcal{P}'' (resp. $\mathcal{P}^{(i)},\mathcal{P}'^{(i)}$ and $\mathcal{P}''^{(i)}$) be the position vectors (resp. coset position vectors) of \mathcal{C}_1 , \mathcal{C}_2 and \mathcal{C}_3 , respectively. Then a coset enumerators of \mathcal{C}_1 , \mathcal{C}_2 and \mathcal{C}_3 are

$$1 + 2x^{3} + x^{4}, \ x + x^{2} + x^{3} + x^{4}, \ x + 2x^{2} + x^{5}, \ 2x^{2} + x^{3},$$

$$1 + 2x^{1} + x^{2}, \ x + 2x^{2} + x^{3}, \ x^{2} + 2x^{3} + x^{4}, \ x^{3} + 2x^{4} + x^{5}$$

$$1 + x^{2} + x^{3} + x^{5}, \ 2x + 2x^{4}, \ x + x^{2} + x^{3} + x^{4}, \ 2x^{2} + 2x^{3}.$$

respectively. Moreover, C, C' and C'' has the same number of distinct coset weight enumerators. Thus, we have

$$\mathcal{G}_{\beta}\mathcal{P} = (r_{0} + 2r_{3} + r_{4})\mathcal{P} + (r_{1} + r_{2} + r_{3} + r_{4})\mathcal{P}^{(1)} + (r_{1} + 2r_{2} + r_{5})\mathcal{P}^{(2)} + (2r_{2} + 2r_{3})\mathcal{P}^{(3)},$$

$$\mathcal{G}_{\beta}\mathcal{P}' = (r_{0} + 2r_{1} + r_{2})\mathcal{P}' + (r_{1} + 2r_{2} + r_{3})\mathcal{P}'^{(1)} + (r_{2} + 2r_{3} + r_{4})\mathcal{P}'^{(2)} + (r_{3} + 2r_{4} + r_{5})\mathcal{P}''^{(3)},$$

$$\mathcal{G}_{\beta}\mathcal{P}'' = (r_{0} + r_{2} + r_{3} + r_{5})\mathcal{P}'' + (2r_{1} + 2r_{4})\mathcal{P}''^{(1)} + (r_{1} + r_{2} + r_{3} + r_{4})\mathcal{P}''^{(2)} + (2r_{2} + 2r_{3})\mathcal{P}''^{(3)}.$$

Therefore, we obtain

$$\sum \alpha^{(j)} = r_0 + 2r_1 + 5r_2 + 5r_3 + 2r_4 + r_5,$$

$$\sum \alpha'^{(j)} = r_0 + 3r_1 + 4r_2 + 4r_3 + 3r_4 + r_5,$$

$$\sum \alpha''^{(j)} = r_0 + 3r_1 + 4r_2 + 4r_3 + 3r_4 + r_5.$$

Choosing $\beta = \frac{1}{5}$, we have $(r_0, r_1, r_2, r_3, r_4, r_5) = \frac{1}{4563}(730, 183, 92, 62, 48, 40)$, and $\sum \alpha^{(j)} = \frac{2002}{4563}$ and $\sum \alpha'^{(j)} = \sum \alpha''^{(j)} = \frac{2079}{4563}$.

6. Application: Explicit lower bounds of the Cheeger constant of a graph with respect to Hamming distance 1

Let Γ_1 be a graph with respect to a Hamming distance 1 over \mathbb{F}_q^n . Then Γ_1 is a distance regular graph. The concept of the Cheeger ratio and the Cheeger constant of subset S of set of vertices of a graph G was introduced in [2]. Let Γ_1 be a graph as G, and let \mathcal{C} be a subset of \mathbb{F}_q of length n as a set S. Then, in this section, we obtain the lower bounds of the Cheeger ratio and the Cheeger constant of \mathcal{C} on Γ_1 . Now, we introduce some definitions in graph theory.

Definition 11. Let S be a subset of set of vertices in a graph G = (V, E), where V is a set of vertices of G and E is a set of edges of G.

(1) The edge boundary of S, denoted by $\partial(S)$ is defined as follows:

$$\partial(S) = \{ \{u, v\} \in E(G) \mid u \in S \text{ and } v \in V - S \},$$

where E(G) is a edge set of G.

(2) If $S \neq \emptyset$, then the volume of S, denoted by vol(S) is defined as follows:

$$\operatorname{vol}(S) = \sum_{x \in S} k_x,$$

where k_x is a valency of x in G. The volume of G is demoted by

$$\operatorname{vol}(G) = \sum_{x} d_x.$$

(3) The Cheeger ratio of S, denoted by h(S) is defined as

$$h(S) = \frac{|\partial(S)|}{\min\{\operatorname{vol}(S), \ \operatorname{vol}(G) - \operatorname{vol}(S)\}}.$$

(4) The Cheeger constant of G, denoted by h_G is defined as

$$h_G = \min_S h(S).$$

We introduce the definition of a personalized PageRank $pr(\alpha, s)$ and several facts that relate the Cheeger ratio and constant to PageRank [2].

Theorem 12. [F.Chung, 2] Let S be a subset of set of vertices in a graph G. Let s be a seed vector, and let α be the jumping constant. Then the PageRank $pr(\alpha, s)$ is defined as

$$pr(\alpha, s) = \alpha \sum_{k=0}^{\infty} (1 - \alpha)^k s W^k,$$

where W denotes a lazy walk of G, defined by $W = \frac{I+P}{2}$.

(a) Then we have

$$pr(\alpha, s) = \beta s \mathcal{G}_{\beta},$$

where $\beta = \frac{2\alpha}{1-\alpha}$. Also, for a subset S of set of vertices in a graph G, we have

$$pr(\alpha, s)(S) = \beta s \mathcal{G}_{\beta} \chi_S,$$

where χ_S is the characteristic function of S.

(b) For a subset S, the probability function f_C satisfies

$$pr(\alpha, f_C)(S) \ge 1 - \frac{1 - \alpha}{2\alpha}h(S).$$

(c) Let T be a subset of S with $\operatorname{vol}(T) \geq \operatorname{vol}(S)/2$ such that for any $u \in T$, the personalized pagerank $\operatorname{pr}(\alpha, u)$ satisfies

$$pr(\alpha, u)(S) \ge 1 - \frac{1 - \alpha}{\alpha} h_S.$$

Let \mathcal{G}_{β} be a Green's function over \mathbb{F}_{q}^{n} . In Theorem 2, \mathcal{G}_{β} is expressed by

$$\mathcal{G}_{\beta} = r_0 A_0 + r_1 A_1 + \dots + r_n A_n$$

with $r_0 > r_1 > \cdots > r_n$. In Theorem 6, $\mathcal{G}_{\beta}\mathcal{P}$ is expressed by

$$\mathcal{G}_{\beta}\mathcal{P} = \alpha^{(0)}\mathcal{P} + \alpha^{(1)}\mathcal{P}^{(1)} + \dots + \alpha^{(t)}\mathcal{P}^{(t)}$$

for some t, where \mathcal{P} is a position vector of a linear code \mathcal{C} and $\mathcal{P}^{(i)}$ $(i = 1, 2, \ldots, t)$ are the coset position vectors.

The following theorem shows that the lower bounds of the Cheeger ratio and the Cheeger constant of \mathcal{C} on Γ_1 can be explicitly determined by β , $\alpha^{(0)}$ and r_0 , which are the values coming from \mathcal{G}_{β} and a coset weight enumerator value of \mathcal{C} .

Theorem 13. Let Γ_1 be a distance regular graph with respect to a Hamming distance 1 over \mathbb{F}_q^n , and \mathcal{C} be a subset of set of vertices of Γ_1 . Let $\beta = \frac{2\alpha}{1-\alpha}$ for a jumping constant α , $\alpha^{(0)}$ be given as in definition 4(3), and r_0 be given as in Theorem 2. Then we have the following.

(1) The probability function $f_{\mathcal{C}}$ and the Cheeger ratio $h(\mathcal{C})$ satisfies the following:

If
$$C$$
 is a linear code, then
$$\begin{cases} pr(\alpha, f_C)(C) = \beta \alpha^{(0)} \\ h(C) \ge \beta (1 - \beta \alpha^{(0)}), \end{cases}$$
If C is a nonlinear code, then
$$\begin{cases} pr(\alpha, f_C)(C) \le \beta r_0 |C| \\ h(C) \ge \beta (1 - \beta r_0 |C|). \end{cases}$$

(2) Let T be a subset of C over \mathbb{F}_q of length n with $\operatorname{vol}(T) \geq \operatorname{vol}(C)/2$, then for any $u \in T$, $\operatorname{pr}(\alpha, u)(C)$ and the Cheeger constant h_C satisfies the following:

If
$$C$$
 is a linear code, then
$$\begin{cases} pr(\alpha, u)(C) = \beta \alpha^{(0)} \\ h_{C} \geq \frac{1}{2}\beta(1 - \beta \alpha^{(0)}), \end{cases}$$
If C is a nonlinear code, then
$$\begin{cases} pr(\alpha, u)(C) \leq \beta r_{0}|C| \\ h_{C} \geq \frac{1}{2}\beta(1 - \beta r_{0}|C|). \end{cases}$$

Proof. Let \mathcal{P} be a position vector of \mathcal{C} , and let \mathcal{G}_{β} be a Green's function as in Theorem 6. Let \mathcal{C} be a subset over \mathbb{F}_q of length n, and we consider the probability distribution which is

$$f_{\mathcal{C}}(x) = \begin{cases} \frac{k_x}{\text{vol}(\mathcal{C})}, & x \in \mathcal{C}, \\ 0, & \text{otherwise.} \end{cases}$$

Then we can write $f_{\mathcal{C}} = \frac{1}{\operatorname{vol}(\mathcal{C})} \chi_{\mathcal{C}} D$, where $\chi_{\mathcal{C}}$ is the characteristic function of \mathcal{C} , and D is the diagonal matrix with $D(x,x) = k_x$. Since k_x is n(q-1) on Γ_1 , we have

$$\operatorname{vol}(\mathcal{C}) = \sum_{x \in \mathcal{C}} k_x = n(q-1)|\mathcal{C}|,$$

and $\chi_{\mathcal{C}}$ is a position vector of \mathcal{C} , that is, $\chi_{\mathcal{C}} = poc(\mathcal{C}) = \mathcal{P}$. Thus,

$$f_{\mathcal{C}} = \frac{1}{\operatorname{vol}(\mathcal{C})} \chi_{\mathcal{C}} D = \frac{1}{n(q-1)|\mathcal{C}|} \mathcal{P} D = \frac{1}{n(q-1)|\mathcal{C}|} n(q-1) \mathcal{P} = \frac{1}{|\mathcal{C}|} \mathcal{P}.$$

(1) [Case I : \mathcal{C} is a linear code.] Since $pr(\alpha, f_{\mathcal{C}})(\mathcal{C}) = \beta f_{\mathcal{C}} \mathcal{G}_{\beta} \mathcal{P} = \frac{\beta}{|\mathcal{C}|} \mathcal{P}^T \mathcal{G}_{\beta} \mathcal{P}$ by Theorem 12 (a). Since \mathcal{C} is a linear, by Theorem 6, the coefficient of \mathcal{P} on $\mathcal{G}_{\beta} \mathcal{P}$ is $\alpha^{(0)}$. Thus we have

$$pr(\alpha, f_{\mathcal{C}})(\mathcal{C}) = \frac{\beta}{|\mathcal{C}|} \alpha^{(0)} |\mathcal{C}| = \beta \alpha^{(0)} = \frac{2\alpha}{1 - \alpha} \alpha^{(0)}.$$

Therefore, by Theorem 12 (b), we have

$$\frac{2\alpha}{1-\alpha}\alpha^{(0)} \ge 1 - \frac{1-\alpha}{2\alpha}h(\mathcal{C})$$

$$\Leftrightarrow h(\mathcal{C}) \ge \frac{2\alpha}{1-\alpha}\left(1 - \frac{2\alpha}{1-\alpha}\alpha^{(0)}\right)$$

$$\Leftrightarrow h(\mathcal{C}) > \beta(1-\beta\alpha^{(0)}).$$

[Case II : \mathcal{C} is a nonlinear code.] Since $pr(\alpha, f_{\mathcal{C}})(\mathcal{C}) = \beta f_{\mathcal{C}} \mathcal{G}_{\beta} \mathcal{P} = \frac{\beta}{|\mathcal{C}|} \mathcal{P}^T \mathcal{G}_{\beta} \mathcal{P}$ by Theorem 12 (a). Since \mathcal{C} is a nonlinear and $r_0 > r_1 > \cdots > r_n$ by Theorem 2 (iii). We have

$$pr(\alpha, f_{\mathcal{C}})(\mathcal{C}) = \frac{\beta}{|\mathcal{C}|} \mathcal{P}^{T} \mathcal{G}_{\beta} \mathcal{P} \leq \frac{\beta}{|\mathcal{C}|} r_{0} |\mathcal{C}|^{2} = \beta r_{0} |\mathcal{C}| = \frac{2\alpha}{1 - \alpha} r_{0} |\mathcal{C}|.$$

Therefore, by Theorem 12 (b), we have

$$\frac{2\alpha}{1-\alpha}r_0|\mathcal{C}| \ge 1 - \frac{1-\alpha}{2\alpha}h(\mathcal{C})$$

$$\Leftrightarrow h(\mathcal{C}) \ge \frac{2\alpha}{1-\alpha}\left(1 - \frac{2\alpha}{1-\alpha}r_0|\mathcal{C}|\right)$$

$$\Leftrightarrow h(\mathcal{C}) \ge \beta(1-\beta r_0|\mathcal{C}|).$$

(2) [Case I : \mathcal{C} is a linear code.] Since $u \in T \subset \mathcal{C}$, we have $pr(\alpha, u)(\mathcal{C}) = \beta \chi_u \mathcal{G}_{\beta} \mathcal{P} = \beta \alpha^{(0)}$. Thus, by Theorem 12 (c), we have

$$pr(\alpha, u)(\mathcal{C}) \ge 1 - \frac{1 - \alpha}{\alpha} h_{\mathcal{C}}$$

$$\Leftrightarrow \beta \alpha^{(0)} \ge 1 - \frac{1 - \alpha}{\alpha} h_{\mathcal{C}}$$

$$\Leftrightarrow h_{\mathcal{C}} \ge \frac{\alpha}{1 - \alpha} (1 - \beta \alpha^{(0)})$$

$$\Leftrightarrow h_{\mathcal{C}} \ge \frac{1}{2} \beta (1 - \beta \alpha^{(0)}).$$

[Case II : \mathcal{C} is a nonlinear code.] Since, $r_0 > r_1 > \cdots > r_n$ by Theorem 2 (iii), we have $pr(\alpha, u)(\mathcal{C}) = \beta \chi_u \mathcal{G}_{\beta} \mathcal{P} \leq \beta r_0 |\mathcal{C}|$. Thus, by Theorem 12 (c), we have

$$pr(\alpha, u)(\mathcal{C}) \ge 1 - \frac{1 - \alpha}{\alpha} h_{\mathcal{C}}$$

$$\Leftrightarrow \beta r_0 |\mathcal{C}| \ge 1 - \frac{1 - \alpha}{\alpha} h_{\mathcal{C}}$$

$$\Leftrightarrow h_{\mathcal{C}} \ge \frac{\alpha}{1 - \alpha} (1 - \beta r_0 |\mathcal{C}|)$$

$$\Leftrightarrow h_{\mathcal{C}} \ge \frac{1}{2} \beta (1 - \beta r_0 |\mathcal{C}|).$$

References

 E. Bannai, T. Ito, Algebraic Combinatorics I, Association Schemes, Benjamin/Cummings, Menlo Park (1984).

- [2] F. Chung, PageRank as a discrete Green's function, Geometry and Analysis, I, ALM 17 (2010), 285-302.
- [3] F. Chung, PageRank and random walks on graphs, Fete of Combinatorics and Computer Science, (G.O.H.Katona, A. Schrijver and T. Szonyi, Eds.), Springer, Berlin, (2010), 43-62.
- [4] F. Chung and S-T. Yau, Covering, heat kernels and spanning tree, Electronic Journal of Combinatorics 6 (1999), R12.
- [5] G. C. Kim, Y. Lee, Explicit expression of a Krawtchouk polynomial using a discrete Green's function. J.Korean Math. Soc. 50 (2013)no. 3, 509-527.
- [6] Huffman, W. Cary, and Pless, Vera, Fundamentals of Error-Correcting Codes, Cambridge, 2003.

Г

- [7] J. Rifa, L, Huguet, Characterization of completely regular codes through P-polynomial association scheme, Lecture notes in Computer Science, Springer, Berlin, 307, (1988), 157-167.
- [8] Luca. Guido Molinari, Determinants of block tridiagonal matrices, Linear algebra and its applications, 429, 8-9 (2008), 2221-2226.
- [9] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Reports Supplements, No. 10.

DEPARTMENT OF MATHEMATICS DONG-A UNIVERSITY, BUSAN, KOREA $E\text{-}mail\ address:}$ higen@dau.ac.kr

DEPARTMENT OF INFORMATION SECURITY, CRYPTOLOGY, AND MATHEMATICS KOOKMIN UNIVERSITY, SEOUL, KOREA

Department of Financial Information Security Kookmin University, Seoul, Korea

 $E ext{-}mail\ address: dckim@kookmin.ac.kr}$