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COSET WEIGHT ENUMERATORS AND A GREEN’S
FUNCTION OVER A HAMMING SCHEME WITH
APPLICATION TO CHEEGER’S CONSTANTS

GIL CHUN KIM AND DONG CHAN KIM

ABSTRACT. We show that the Hamming weight enumerators of cosets
of a linear code C over IV, of length n are closely related to a discrete
Green’s function Gz. Using this relation, for instance, we obtain the ex-
act number of distinct coset weight enumerators of C. As an application,
we show that lower bounds of the Cheeger ratio and the Cheeger con-
stant of C on I'y can be explicitly determined by Gz and a coset weight
enumerator value of C, where I'; is a distance regular graph with respect
to a Hamming distance 1 over IFy.
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1. INTRODUCTION

The concept of a Green’s function was introduced in a famous essay of
George Green in 1728. In [4], a discrete Green’s function defined on graphs
is closely associated with the normalized Laplacian and is useful for solving
discrete Laplace equations with boundary conditions. In [2, 3], F. Chung
introduced the relationship between the PageRank and a discrete Green’s
function Gg with a positive real number §. A Green’s function Gg can be
explained with an inverse relation of the S-normalized Laplacian Lg repre-
sented by a adjacency matrix.

In [9], Delsarte introduced a Hamming scheme H(n,q). A Hamming
scheme H(n,q) is a P-polynomial scheme (metric scheme) [1, 9]. That is,
for all ¢ with 0 < ¢ < n, an adjacency matrix A; with respect to the Hamming
distance i can be represented by a polynomial of degree i with respect to an
adjacency matrix A;. Equivalently, a graph I'y with respect to a Hamming
distance 1 is a distance regular graph. In [7], an association scheme is
constructed by the distinct coset weight enumerators of a linear code C over
Iy, and it turns out to be a P-polynomial scheme. It is also known that the
coset weight enumerators of a linear code C are closely connected with the
number of distinct nonzero weights of a dual code of C [6].

In this paper we show that the Hamming weight enumerators of cosets of
a linear code C over I, of length n are closely related to a discrete Green’s
function Gg by finding an explicit expression for Gg in terms of adjacency
matrices (Theorem 2). Using this relation, for instance, we obtain the exact
number of distinct coset weight enumerators of C (Theorem 6). In fact,
we use an n X (n + 1) matrix Lg,, for the explicit expression of Gg. As
an application, we show that lower bounds of the Cheeger ratio and the
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Cheeger constant of C on I'; can be explicitly determined by 3, o(®) and r,
where a(®) is a coset weight enumerator value of C as in Definition 4, rq is
given as in Theorem 2 and I'; is a distance regular graph with respect to a
Hamming distance 1 over Ig. The Cheeger ratio and the Cheeger constant
are related to the notion of PageRank by F. Chung [2].

This paper is organized as follows. In Section 2, we introduce some basic
facts about the Hamming scheme H(n,q) and a discrete Green’s function
G, and in Section 3, we introduce an n x (n + 1) matrix Lg,. In Section 4,
we find an an explicit expression of a Green’s function Gg over Iy in terms
of adjacency matrices, and we explain the relationship between a Green’s
function Gz and Lgyp. In Section 5, we show the relationship between a
Green’s function Gg and the coset weight enumerators of a linear code C
over I, of length n. Finally, in Section 6, we obtain the lower bounds of
the Cheeger ratio and the Cheeger constant of C on I'y in an explicit way
by using the results in the sections 4 and 5.

2. PRELIMINARIES

In this section, we introduce basic facts on Hamming scheme H (n, ¢) and
the discrete Green’s function. Let d(x,y) be the Hamming distance over
. We describe the relations by their adjacency matrices 4; (0 <i <n)is
the ¢ x ¢" matrix defined by

[ 1, ifdy(x,y)=1i
(Ai)ay = { 0, otherwise.
The Bose-Mesner algebra A generated by the adjacency matrices A; , that
is, A = {D_ti4;| to,t1,--- ,tn € R}. Bose-Mesner algebra 4 has a unique
basis of primitive idempotent matrices Fy, F1,--- , E,, that is,

n
(1) ExEy = 0By, (k,1=0,1,---,n), (2) Y Ei=1I,
=0

where dy; is the Kronecker delta. Bose-Mesner algebra A have two basis
{A;} and {E;}. We express the one in terms of the other and we obtain

n ' 1 )
(1) A; = "p(i)E;, B; = 7 > 4D A;

=0 =0
where j = 0,1,---,n. The (n + 1) x (n + 1) matrix P = (p;(¢))(resp.
Q = (g;(4))) is called the first eigenmatrix (resp. second eigenmatrix) of the
Hamming scheme H(n,q). They satisty the relation PQ = QP = ¢"1I.

Define a transition probability matrix P by

1
k1
where ki is the 1-th valency of H(n,q). For a function f : Fy — R, we define
a Laplace operator A by

P= A17

Af(@) = 1 (@) - ).

y~z
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Then, we have A = I — P, ie., A =1 — kl—lAl. For all : = 0,1,--- ,n, a
Laplace operator A is symmetric since A; is symmetric. Then, A is a matrix
representation of £. For j =0,1,--- ,n and orthonormal eigenfunctions ¢7,
we have

n
L= Xdjo;,
§=0
where )\; is an eigenvalue of £. Let L3 be the -normalized Laplacian by

BI + L. For g > 0, let Green’s function Gg denote the symmetric matrix
satisfying £3Gs = I. Then we have

"1
g :E b
’ j:0ﬂ+)‘j¢]¢]

For 8 > 0, we have
Gs(BI +1—-P)=1,
ie.,
Gs=((B+1)I—-P) "
Thus, by (1) this implies that

Lﬁ=(,6+1)1_P=(5+1)1_ki1A1

1 — _
=B+1I- HZPl(])EJ-
7=0
Since I = Eg+ E1 + -+ - + E,, we have

1
Lg=B+1)(Eo+E+ - +E)—

k1
n 1
= E </3+1——k Pl(j)) Ej,
A 1
J=0

where g+ 1 — %lpl (4) is an eigenvalue of L. Hence, a Green’s function Gg
can be expressed by

(p1(0)Eo +p1(1)Ey +--- + p1(n)Ey)

n

Gs = j;o ((54— 1)ky —pl(j)> i

Since Ej = (1/¢™) " q;(i)A;, the discrete Green’s function Gg is a linear
combination of adjacency matrices A;.
The follows are the notation set used in this paper.
e H(n,q) : a Hamming scheme over F7.
e P : the first eigenmatrix of H(n,q).
e Q : the second eigenmatrix of H(n,q).
e p;j(i) : (4,7)-component of P.
e g;(i) : (i,j)-component of Q.
k; : the valency of the i-th Hamming weight relation.
N(A) : anullspace of a matrix A.
W(C) : a weight enumerator of a set C over F, of length n.
1: ¢" x 1 vector consisting of only ‘1°.
I’y : a graph with respect to a Hamming distance 1 over Fj.
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3. A REDUCTION MATRIX Lgyu; ON Lg

Now, we introduce a n x (n + 1) matrix L,; obtained from Lg. In fact,
Ly has information about the discrete Green’s function Gg. Lg,, obtained
by Stepl, Step2, Step3 and Step4 as the following.

Let L be a (¢" — 1) x ¢" matrix obtained by the removal of the first row
of Lg. Then we have the rank of L is ¢" — 1, and the nullity is 1 since Gg
has the inverse matrix. A basis of the nullspace of L can be induced from

r’s which are coefficients of Ay in Gz. Let Qél) be the first column vector of

Gp which is arranged in order ro, r1, -+, rp. Then gél) is a ¢" x 1 matrix,
and we have

g =0

since Gg is orthogonal. Note that each row of 951 is related to the Hamming
weight of its row numbers. Thus, we can rearrange the rows of L by the
Hamming weight of each row number as follow steps.

Stepl : Let

L1k
r21

ra ko

Tk,
where r; 4, is a row vector of L of Hamming weight ¢, and k; is the
number of row vectors of Hamming weight .
Step2 : Let

ra
LI _ ra 1
T
Then, L’ is an n x ¢" matrix. Note that the column vectors of L is
arranged according to its Hamming weight in the increasing weight
order. We can rewrite L' with its column vectors as follows.

L'=(co1|ci1r - cig|car ~ Cok | Cnk, ),

where ¢; , is a column vector of L’ of Hamming weight i, and k; is
the number of column vectors of Hamming weight 1.
Step3 : Let

L' = ( Co1 Zfilcu 21-2102@‘ Z§21Cni )
Then, L” is an n x (n + 1) matrix.
Step4 : Let Lgyp = —k1L” (k1 = n(qg —1)).

Now, we determine the entries of Lgy. Let 2,y € Fy. For x € Fj' with
wtg(w) = i, let s be the number of y € Fy such that wty(y) = j and
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dp(z,y) = 1. Then we have :
i, J=1-1,
§= Z(qu)v j:Z,
(n—i)(g—1), j=i+1
And, by the triangle inequality, s = 0 if | — j| > 2. Since L, is determined
by Step 1,2,3,4 on Lg, thus Ly, is as follows :

1 S1 t1 0 0 0

0 2 s to 0 0

0 0 3 S3 t3 0

Lsub: )

oo i i . 0

0 0 0 -+ n—1 8,21 th_

o o0 o0 - 0 n Sn
where s; = i(q—2)—n(¢g—1)(+1) fori=1,2,--- ,n,and t; = (n—j)(¢—1)
for j = 1,2,--- ,n—1. It is clear that s;_1 < s; for i = 1,2,--- ,n and
ti—1 > t; > 0for j =1,2,--- ,n— 1. Lgu is n x (n + 1) matrix with

rank(Lgyp) = n. Thus dimAN (Lgy) =1 .

Example 1. For § > 0, a 8 x 8 matrix L3 over I3 is as follows :

B+1 -+ -3 -1 0 0 0 0
-3 B+1 0 0 -+ -1 0
—% 0 B8+1 0 —% 0 —% 0
r -3 0 B8+1 0 -+ -3 0
6= 0 -+ -4 0 B+1 0 0 —1
0 72 f% 0 B+1 0 %
0 0 -+ -3 0 0 B+1 —3
0 0 0 0 -+ -3 -3 B+1
Then, we obtain the following matrices L', L” and L, respectively.
-3 B+1 0 0 -+ -3 0 0
—% 0 pB+1 0 —% 0 —%
-3 0 0 p+1 0 -3 -3 0
L' = 0o -+ -1 0 B+1 0 0 -+ |,
0 —% 0 —% 0 pg+1 0 —%
0 0 -+ -3z 0 0 p+1 -3
0 0 0 -3 -3 -3 B+1
JF

1 —3(8+1) 0
wa=(() 2 —3(8+1) 1 >.
0 0 3 —3(B+1)

4. A DISCRETE GREEN’S FUNCTION Gg AND Lgy,

In this section, we show that the Green’s function Gg is determined by
a basis of N(Lgy). That is, the entries of Gz are determined by a basis
(uo, 1, ,up) of N(Lgyp) with up, = 1.
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In the following theorem, we find an explicit expression for a Green'’s
function Gg.

Theorem 2. Let Gg be a Green’s function over Iy and let (ug,u1,- -+ ,un)
be a basis of N'(Lgyp) with u, = 1. Then we have the following.

(i) A Green's function Gs can be expressed by a linear combination of

adjacency matrices A; of Fy for i =0,1,2,--- ,n such as
Gs =rodo+ 7141+ +7rnAp.

(#) (ro,71,++ ,7n) is an element of N(Lgyw), and

(ro, 1, ,7mn) = c(ug, ur, -+, Up),

where

¢ =~y n(g — 1)n! —o,

[ TT 0< i *(nf(z‘))tniiil >] to1

and sp; = (n—1i)(q—=2) —nlg—1)(B+1),tni-1=(+1)(qg—1).
(iii) ris satisfy that 1o >ry > -+ >ry, > 0.
Proof. (i) Let E; be an idempotent matrix in H(n,q). Then we have

1 n
n Z q; (1) A;
q =0

so that, for 5 > 0,

n

B 0(ﬂ+1 i p1()>Ej

k1

:71<w+nm ) 53%

J=

B ZZ% (ﬂ+1)k1—p1(j)>Al'

=0 j=0

k)

Hence, a Green’s function G can be expressed by a linear combination of A;.

(ii) Let Gg = roAo + 11 A1 + -+ + rpA,. Then each element of the first
row and the first column is related to the Hamming distance from the origin
O in Fy. we obtain that the first row of Gg is as follows :

TO 7"1 .. 7"1 - T"’l ... Tn’
~ N—— N——
1 term ki terms kyn terms

Furthermore, G is a ¢" x ¢" matrix. Since Gz = ((8+ 1)I — P)~!, we have
1
Gyl =(B+DI-P=(B+1I - A
! 1

for > 0. Since (8 + 1)I — kilAl is symmetric, the first row(column) of Gg
is orthogonal to the other rows(columns) of (8 + 1) — k_llAl' Since L is a
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matrix obtained from a removal of the first row of le, there is no row whose
number is a Hamming weight 0. Hence, L, has n rows. Furthermore, each
row of Ly, has n+ 1 elements. Therefore, we obtain an n x (n + 1) matrix
Lgyup, and we have

To
1
Lsub : = On><1~
T'n
Since N (Lgyp) is a 1-dimensional null space of Lgyp, we have (19,71, -+ , 1) =
c(ug,u1, -+ ,uy,) for some real value c.
Now, we will determine a real value c. Let Lgy, be an (n+1) x (n+ 1)-
matrix obtained from Lg,; by adding (sg to 0 --- 0) as its first row, where

so=-—n(g—1)(B+1) ,and tg = n(¢—1). Since (rg,r1, -+ ,ry) is orthogonal
to the row vectors of Ly, ,and Ly is obtained by multiplying —n(g — 1),
the first column vector of (—n(g — 1))Zsub_1 is (ro, 71, ,7n). Therefore,

= —n(q — 1)Cofactor of (1,n + 1)entry of Ly
" 1 det(zsub) 7

where a cofactor of (1,n + 1)-entry of Ly is

1 s1 t 0
0 2 s9 ta O
(~1)*"det | 0 0 3 83 =(=1)" n!
0 0 n
Thus,
c= (_1)n+1n(q __1)”"
det(Lsub)

Since Ly is a tridiagonal matrix, det(Ls,,) can be evaluated via multipli-
cation of 2 x 2 matrices [8].
(iii) Now, for £ = 0,1,2--- ,n and a coefficient r; of Ag, we show that
ro>1ry > >1ry > 0. We claim that i +¢; < —s; fori =1,2,--- ,n — 1.
since n(qg — 1) —i(qg — 2) <n(g—1)(8+1) — i(g — 2), we have
i+ti=i+(n—1i)(¢g—1)
=n(qg—1)—ilg—2)
<n(g-1(B+1) —ilqg—2)

= —S5;.
Hence, we have
(2) T4t < —s;

fori=1,2,---,n—1.
We find a basis of the nullspace of Lg,; by elementary row operations.
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By the Gauss-Jordan elimination, we have the following reduced row echelon
form matrix:

100 0 0 --- S,

010 0 0 - S,

000 1 0 S

000 0 1 St
where ) = 22, ) = %, and S; = — =t (Si—1Sn—it1 + Si—2tn_i+1)
for i = 3,4,--- ,n. Then, since 8 > 0, we have

s
Slzgn:q—Q—(q—l)(ﬂ+l)<—1.
We claim that S; < S;_1 for i = 1,2,--- ,n. Note that
1 1
Sy = m(tnfl — S18n-1) = m(tnfl + S1(—5n-1))

Since S1 < —1 and s,_1 < —1, we have

(th1+ S1(=sn-1)) < (tn—1+S1(n —1+1t,-1))

1 1
n—1 n—1
from (2). Since S; < —1, we have
tn—l(l + Sl)

n—1

1
Sy < m(tn_1+sl(n*1+tn_1))251+ < 5.

Suppose that S; < S;_1 < —1 for some i. Then, form (2), we have

1 1
Siv1 = *E(Sisnfi + Sicitn_i) = E(Si(*sn%) — Si—1tn—s)

< ! -(Si(n — i+ th—i) — Si—itn—i)

n—i
S; — Si—1

n-—1

= Sz + tnfi( )

Since S; < S;_1, we have S;11 < S;. By the mathematical induction, we
have
Siv1 < S;
for all i = 1,2,--- ,n. Hence, for a basis (ug,uy, - ,up)’ of N (L), we
have
ug > up > - > uy = 1.
Since 8 > 0, we have det(Lg) > 0. Further, since cofactors of diagonal

entries of Lg are positive values, we have rq > 0. Therefore, we have rq >
TL> > > 1 > 0. O

Example 3. Let Ly, be a 5 x 6 matrix obtained by Step 1,2,3 and 4 in
Section 3. Then, L, is given by

1 1-10(8+1) 8 0 0 0
0 2 2 -10(8+1) 6 0 0
0 0 3 3-10(8+1) 4 0
0 0 0 4 4-10(8+1) 2
0 0 0 0 5 5—10(8 +1)
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Choosing 8 = %, then we obtain a basis of N'(Lgy) as

2 368 86
37573 55 '

Also, Lgyp is

—11 10 0 0 0 0
1 —10 8 0 0 0
0 2 -9 6 0 0
0 0 3 -8 0
0 0 0 4 -7 2
0 0 0 0 5 -6

and det(T,y;) = 58240, ¢ = 1200/58240 = 15/728. Thus,
15 (152 36 8 8 6 1)
5 )

(7’0,7‘1,7’2,7‘377'4,7"5)_ 3 ) 57 ga 37

T 728

Note. (1) Let (ug,u1,--- ,u,) be a basis of N'(Lgy) with u, = 1. For all
twithi=20,1,--- ,n— 1, if 8 > 0 increases, u; increases. Furthermore, u;
approaches 17 as 3 approaches 07.

(2) [5] Let Lo be a n x n matrix obtained by the removal of the first column
of Lgyp. Let L; be a (n — i) x (n — i) matrix obtained by the removal from
the first row(respectively, column) to the i-th row(respectively, column) of

Lo and let (ug,uy,- -+ ,up) be a basis of N'(Lgyp) with u, = 1. Then we have
4! det(L;
u; = (f1)ﬂ—zw, (i=0,1,---,n—1),
n!
where det(L,,)
B
‘E‘\»\
1 By S S —— :ﬁ=0
u, U, U, u,, u

5. A COSET WEIGHT ENUMERATOR AS A GREEN’S FUNCTION §g

In this section, we investigate the relationship between an a coset weight
enumerator of a linear code C and a Green’s function Gz. We begin, we
introduce some definitions.
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Definition 4. (1) Let C be a subset of Fy of length n. We arrange elements
of C according to their Hamming weight. Define
D - 1, if i-th element is in C,
' 0, if i-th element is not in C,

This ¢" x 1 vector P = pos(C) = (P;)1<i<qn is called a position vector of C.

(2) For a subset C of F, of length n and y; € C™1 = Fy —C, let
Sy)={z | W(C+2)=W(CH+wy),zeC '}

and t the number of the distinct set S(y;)’s. Then, P = pos(C™1) s the

position vector of the set S(y;) fori=1,2,--- ,t, and PY is called the coset
position vector of C~1 with respect to y;.

(3) Let Gg be a Green’s function as in Theorem 2 (1). That is, Gs = 1o Ao+
Ay 4 rp Ay, Forz € S(y;), let W(C+2) = co+crx+cox? +- - +cpa®,
and let a value oV denote coro + c1r1 + -+ + eorn, then o is called the
coset weight enumerator value of S(y;) (i = 1,2,--- ,t). Also, we define that
o) is a coset weight enumerator value of C. That is,

a0 zec
a®, ze S(yi)-

Example 5. We arrange all elements of I3 as 000, 100, 010, 001, 110, 101,
011, 111. Let € = {000, 100}. Then the position vector of C is P=pos(C) =
(1,1,0,0,0,0,0,0)”. We consider a coset C +y for y € C~!. Then C +y are
{010, 110},{001, 101}, and {011, 111}. Thus PV = (0,0,1,1,1,1,0,0),
P =(0,0,0,0,0,0,1,1). Moreover, a® = rg4ry, o) = rj+ry and a® =
ro+7r3. Now, we consider a Green’s function Gg = roAg+ridi+reAs+1r3As
over I3 as follows :

To TL TL TL T2 T2 T2 T3

T To T2 T2 Ti Ti1 T3 T2

TL T2 To T2 T1 T3 T1 T2

ToT2 T2 To T3 T1OTL T2

T TL T T3 To T2 T2 T1

T2 1 Ty T T2 To T2 T

T T3 TL T1L T2 T2 To T1

s Te T2 T2 T T1 T1 TQ
Then, GgP is (@@ 0@ oM o™ oM oM o2 o) That is,

GsP = aOP + oaWPW) 4 o2 PpA),

In the following theorem, we show that for a given 3 and a given liner code
C over I, of length n, the coset weight enumerator values can be uniquely
expressed as a linear combination of 7;’s, where Gg = roAo+ri A1+ - -+r, Ay,
Furthermore, we find the exact number of distinct coset weight enumerators
of C by expressing Gg'P as a linear combination of a position vector P of C
and the coset position vectors P with coefficients a(?.



Coset weight enumerators and a Green’s function over a Hamming scheme

Theorem 6. Let C be a linear code over Fy of length n, and P = pos(C),
pl) = pos(i)(C_l). Let Gg = rgAg+r1A1+ - +1,A, be a Green’s function
over Fy as in Theorem 2 and let o (i =0,1,--- ,t) be the coset weight
enumerator values over Fy. Then we have the following:

(1) a® = oW if and only if i =c"; for all i, where a® = Zcﬁ;m and

cv(l) = Z C”i'l‘i.

(2) There are t + 1 distinict coset weight enumerators of C if and only
if GgP = aOP 4 oMpM) 4. (OPp®) for distinct positive o,
where P+ PN ... 4 PO =1,

Proof. (1) (=) Suppose that o) = o) for some k, I. Then, we have

K)

/ / , ,, y Y l
a®) = coro+cir1 - et =cgro 1 - ey = oW

for some ¢}’s and ¢}’s. This implies that

ro 1
Ay & - d ol a0
@ 4 a )] \a® e )
rn 1
C/ C/ e C/
Let K = ( 0" 7 ), and we assume that rank(K) = 2. Then w =
cO cl e cn
(ch—cf &y =, ch,—ch) is a non-zero vector, and w is orthogonal to both
(1,1,---,1) and (rg,r1,--- , 7). Hence, w is contained in the nullspaces of
1 x (n+1) matrices (1 1 --- 1) and (ro r1 -+ 7,), respectively, where the
nullspaces of (11 --- 1) and (ro vy --- r,) are same to the row spaces of
-1 100 0 1 00 0 —ro
-1 010 0 010 0 —-r
vl -100 1 0 anav=]001 (p——
-1 0 0 O 1 000 -+ 1 —rp

respectively. Let u; and v; be the i-th row vectors of U and V, respectively.
Then, for i = 1,2,--- ,n, we have u; & span{vy,ve, -+ ,v,}, and u;’s are
linearly independent. Suppose that aw; 4+ bu; = tiv1 + - - - + t,v, for some
i, j, a and b. If all ¢;’s are 0, then we have a = b = 0 since u;’s are linearly
independent. If ¢; # 0 for some 7, then neither a nor b is 0. Hence, there are
j and k such that b, # 0, t; # 0, and

u; = Z bruy, + Z tjv;.

b0 £;70

545



546 G. C. Kim and D. C. Kim

Since w = Y g;u;, we have

w:Zgi Zbkuk—Fthvj

br#0 t]‘;ﬁO
=22 D gbwuk+d > gitivy.
br#0 t; 70
Since g;by, # 0 and g;t; # 0 for some 4, j, k, we have w & span{vy,--- , v, }.
Hence, in order that w is orthogonal to both (1,1,--- ,1) and (rg, 71, -+ ,70),
it should hold that w = O. Thus, we have ¢, = ¢, ¢} = ¢/, ---, ¢, = ¢,

i.e., we have rank(K) = 1, which is a contradiction.

(<) It is obvious.

(2) (=) Suppose that there are t + 1 distinct coset weight enumerators
on C. Then by (1), there exist t 4 1 distinct values o (i = 0,1,--- ).
Since Gg = r9Ao + r1 A1 + -+ + 1Ay, by definition 4, GgP is a linear
combination of P and P®) (0 < i < t) with coefficients a® . Also, Tt is clear,
P+PH+PA ... PO =1,

(<) By (1) and definition 4, it is obvious. O

Example 7. Let C be a linear code over s of length 4 as follows :
{0000, 1010, 1101, 0111}.
Then, a position vector P of C is as follows :

P=(1000001000001010)7

Let Gz be a Green’s function over IJ?‘Z1 with g = %. Then Gg is as follows :

332 20 8 8 32
gg = ﬁAO + @Al + EAQ + @A;g + mAzl,
where A; (i =0,1,--- ,4) are the adjacency matrices of H(4,2). That is,

poo92 20 8 _8,._32
07 315 T 632 4573 T 637 T 315

Thus, we have

52 32 4 32 4 4 52 4 4 32 4 4 52 4 52 32
GP=(so o oo o e S S as T T ae T aE )

52 32 4
= 22p(1) 4 Zp(2)
3577 + 357) + 577 .

Therefore, by Theorem 6, there are exactly three distinct coset weight enu-
merators of C. In fact, the cosets of C are

0000 1000 0100 0001
1010 0010 1110 1011
1101 (’ 0101 (° 1001 1100 (°
0111 1111 0011 0110

and the coset Hamming enumerators are 1+x24223, 2z+22+24, 4222423,

Therefore GgP is (ro+re+2r3)P + (2r1 +r2+ ) PY 4 (ry + 219 4+ 73) PP,
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For two linear codes over I, of length n with the same dimension, the
following result shows the relation between their coset weight enumerator
values oY) and their number of the distinct coset weight enumerators when
GsP and GzP’ are expressed as a linear combination of coset position vectors
PO with coefficients ().

Theorem 8. Let C and C' be linear codes over Fy of length n with dim(C) =
dim(C"), and let P (resp. PD) and P’ (resp. P'V) be the position vectors
(resp. coset position vectors) of C and C', respectively. For a Green’s func-
tion Gg over F7, suppose that

' GsP = aOP 4 aWPM) 4 ... 4 (PO,
GsP = dOP + OPO) .. 4 OPO),

Then, we have as follows :

(I)Za(j) > Za'(j) = t>1,
2)t<l = Za(j) < Zo/(j)./

(3) Z al) = Zo/(j) & Za(j) and Za'(j) have the same linear co -

mbination of ro, 71, ,Ty.

Proof. (1) Suppose that ) ald) > > o', Then for 8 >0,

Za(j) =doro+diry + -+ dyrn > doro +diry + -+ dpry = Za/(j)-
Let (ug u1 --- up) be a basis of Lgy, with u, = 1. Then (ug ug -+ up) —
(1,1,--- ,1)" as B — 0. Therefore

;%J%m+mm+m+%mz%m+%m+m+¢m)

=(do+di+- +dp>dy+dy+-- +dp).
Since Y d; =t|C| and Y d} =|C|, t|C| > I|C| & t>1.
(2) by (1), it is obvious.
3) (=) Let Yal) = Y7 dir; and Yo'V = " dlr;. Suppose that

=0 =0 "

S al) =37 a/U) for any 8 > 0. Then (do —dj, -+ ,dp—dy)) is an orthogonal
with (ro,rl,-f ,rn_). Let fB? >0(GE=0,1,---,n)with0< o< f1 < <
By and let (ug),u(f), e ,u(n’)) be a basis of V(L) with respect to 3; > 0.
Define a (n + 1) x (n+ 1) matrix B = (uy)) as follows :

u((]O) ugO) U%O)

u(()l) ugl) u7(11)

u(()") ugn) ™
where uﬁf) =1 (¢ =0,1,---,n). Since u(()i) > ugi) > e > ug) =1 and
u;o) < ug-l) < e < ug»n) (i,7 = 0,1,--- ,n, j # n), B is an invertible

matrix. That is, rank(B) = n + 1. Since a nullspace of (dy — dfy, -+ ,dn —
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d})) is a n-dimensional space, (do — dfy, -+ ,dp — d;,l ) is not orthogonal with
(ro,m1,+++ ,p) for some B > 0. Therefore (dy — dj), - ,dn — d,) = O, that
is, >« () and > ') have the same linear comblnatlon of T0,T1, " 5T n-

(<) It is obvious. O

Example 9. Let C; (i = 1,2) be a linear codes over 5 of length 5 as follows

¢, = {00000, 10000}, Cy = {00000, 01111}

And let P (resp. P)) and P’ (resp. P'()) be the position vectors (resp. coset
position vectors) of Cy, Ca, respectively. Then a coset enumerators of C; and
Cy are

1+, x+x2, x2+x3 m3+x4 2t 4 2
1—|—x4, m+cz:5, x+x 22 —l—m 21 223
respectively. Thus we have
GsP = (ro +r1)P + (r1 + r2)PW + (ry + r3) PP
+ (r3 + ra)P® + (rg + r5)PW,
GsP' = (ro+ra)P' + (r1 + 7“5)73'(1) +(r + rg)P'(Q)
+ (ra +1a)P'® + (2r) P’ - (205)P' ).
Therefore, we obtain
Za(j) =1 + 211 + 219 + 2r3 + 2rg + 715,
Za’(j) =1+ 2r1 + 3ry + 3r3 + 2ry + r5.

Since rg > 11 >1ro > -+ >1ry >0, Za < Za'(] And the numbers of
distinct coset weight enumerators of C and C’ are 5 and 6 respectively.

Example 9 shows that if > o) > 37 o/0), then t > [. However it is not
true in general. Example 10 shows this case tha.t t=1but Y al) #£ 3 o/

Example 10. Let C; (i = 1,2,3) be a linear codes over Fa of length 5 as
follows :

C, = {00000, 10110, 11101, 01011},
Co = {00000, 10000, 01000, 11000},
Cs = {00000, 11000, 00111, 11111},
And let P,P" and P” (resp. P, P') and P"() be the position vectors

(resp. coset position vectors) of Cq, Co and Cs, respectively. Then a coset
enumerators of C1, Co and Cs are

1+2x3+$4, x+x2+x3+a}4 x + 222 +x 222 +.’I}
1+2w1+m2, ac—|—2952—|—ac?’7 2?2 + 223 —I—ac 23+ 224 —I—ac
1+x2+x3+x5, 2x+2x47x+z2+;r +x 222 +2x
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respectively. Moreover, C, C' and C” has the same number of distinct coset
weight enumerators. Thus, we have

GgP =(ro + 2r3 +74)P + (11 + 12 + 13+ 14)PWD
+ (11 + 2ry + 75)PP + (2ry 4 2r3)PB),
GsP' =(ro + 21 + o) P + (r1 + 2rg + r3)P'")
+ (ro+2r3 + 1) P’ 4 (r3 + 2ry + 75) P
GsP" =(ro +ro+r3+75)P" + (2r1 + 27"4)?"(1)
+ (r1 472+ 73+ 12)P"P 4 (205 4 2ry) P,
Therefore, we obtain
Z a9 =rq + 2ry + 5ry + 5r3 + 2r4 + 75,
Z o/(j) =rg+ 3r1 +4rg + 4r3 + 3ry + 15,
Z o'9) =g + 3ry + 47y + drs + 3ry + 75,
Choosing ,6’ , we have (ro, rl, r9,T3, 7“4, T5) = 4563(730, 183,92, 62, 48, 40),

2002 n(G) _ 2079
and 3 al) = 2002 apd SV =3 o) = il

6. APPLICATION : EXPLICIT LOWER BOUNDS OF THE CHEEGER
CONSTANT OF A GRAPH WITH RESPECT TO HAMMING DISTANCE 1

Let I'y be a graph with respect to a Hamming distance 1 over Fy. Then
I'; is a distance regular graph. The concept of the Cheeger ratio and the
Cheeger constant of subset S of set of vertices of a graph G was introduced
in [2]. Let I'y be a graph as G, and let C be a subset of IF; of length n as a
set S. Then, in this section, we obtain the lower bounds of the Cheeger ratio
and the Cheeger constant of C on I'1. Now, we introduce some definitions
in graph theory.

Definition 11. Let S be a subset of set of vertices in a graph G = (V, E),
where V' is a set of vertices of G and E is a set of edges of G.
(1) The edge boundary of S, denoted by (S) is defined as follows :

0(S) ={{u,v} € E(G) |[ue SandveV — S},

where E(G) is a edge set of G.
(2) If S # @, then the volume of S, denoted by vol(S) is defined as follows :

vol(S) = "k,

zES

where ky is a valency of x in G. The volume of G is demoted by

vol(G) = Zd
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(3) The Cheeger ratio of S, denoted by h(S) is defined as
_ 10(5)|
MS) = nTeol(9), vol[G) —vol(9)}
(4) The Cheeger constant of G, denoted by hq 1is defined as
ha = mingh(S).

We introduce the definition of a personalized PageRank pr(«,s) and
several facts that relate the Cheeger ratio and constant to PageRank [2].

Theorem 12. [F.Chung, 2] Let S be a subset of set of vertices in a graph
G. Let s be a seed vector, and let o be the jumping constant. Then the
PageRank pr(a, s) is defined as

o0
pr(a,s) =« Z(l —a)ksw,
k=0
where W denotes a lazy walk of G, defined by W = #.
(a) Then we have
p'f‘(CM, S) = /Bsgﬁv
where B = ﬁ—aa Also, for a subset S of set of vertices in a graph G, we have

pr(a, s)(S) = BsGsxs,
where x g is the characteristic function of S.

(b) For a subset S, the probability function fc satisfies

pr(e, fo)(8) > 1~ ——h(s).

(¢) Let T be a subset of S with vol(T) > vol(S)/2 such that for anyu € T,
the personalized pagerank pr(a,u) satisfies

pr(enu)(S) > 1— 1=

hs.

Let G be a Green’s function over Iy, In Theorem 2, Gj is expressed by
Gg =roAo +r1A1+ - + 1A,
with rg > 71 > --- > r,. In Theorem 6, GgP is expressed by
GsP = aOP + WPl .. ¢ aOp)

for some t, where P is a position vector of a linear code C and P®) (i =
1,2,...,t) are the coset position vectors.

The following theorem shows that the lower bounds of the Cheeger ratio
and the Cheeger constant of C on I'; can be explicitly determined by 8, (¥
and rg, which are the values coming from G and a coset weight enumerator
value of C.
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Theorem 13. Let 'y be a distance reqular graph with respect to a Hamming
distance 1 over Iy, and C be a subset of set of vertices of I'y. Let = 1%

for a jumping constant o, o9 be given as in definition 4(3), and ry be given
as in Theorem 2. Then we have the following.

(1) The probability function fec and the Cheeger ratio h(C) satisfies the
following:

o)
If C is a linear code,then { (O)[’ fe)(€) =

h(C) > B(1 - ,Ba ),
If C is a nonlinear code,then { h(é(;gcg((l _Sﬂf(’)"rgﬂ

(2) Let T be a subset of C over Fy of length n with vol(T') > vol(C)/2,
then for any u € T, pr(a,u)(C) and the Cheeger constant he satisfies the
following:

. pr(a,u)(C) = fa
If Cis a linear code,then { he > %/3(1 B /3@(0)),

If C is a nonlinear code,then { Z::(g ;)ﬁ((cl)—gﬁﬁr;i)lc%l

Proof. Let P be a position vector of C, and let Gg be a Green’s function as
in Theorem 6. Let C be a subset over IF, of length n, and we consider the
probability distribution which is

kl‘
felw) = { e £ =6
0, otherwise.
Then we can write f¢ = VO]( 3 xeD, where xc is the characteristic fuction of

C, and D is the diagonal matrix with D(z,x) = k,. Since k, is n(q — 1) on
I'y, we have

vol(C) = "k, =n(g - 1)|C],
zeC
and yc is a position vector of C, that is, x¢ = poc(C) = P. Thus,
1 1 1 1
fe=

——xcD = PD = n(g—1)P =—=P.
wi@) P i o oV T i
(1) [Case I : C is a linear code.] Since pr(a, fe)(C) = BfcGsP = ]%PTQB’P
by Theorem 12 (a). Since C is a linear, by Theorem 6, the coefficient of P
on GgP is o). Thus we have

. B 2
pr(a f0)€) = a¥le] = o = .
Therefore, by Theorem 12 (b), we have
2a 11—«
0 >1 - h
1- (ya - 2 (©)
2« 2a
> _ (0)
ﬁh(c)_lfa(l 17(Ma )

& h(C) > B(1 - Ba?).
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[Case II : C is a nonlinear code.] Since pr(«, fc)(C) = BfcGsP = %PTQMD
by Theorem 12 (a). Since C is a nonlinear and ro > r4 > -+ > r, by
Theorem 2 (iii). We have

20
11—«

pr(a, fo)(€) = B-PTGp <

- B
€|

C|

7"0|C|2 = ﬁT0|C| = 7‘0|C|.

Therefore, by Theorem 12 (b), we have

2 1 a
el >1 - —2

h(C)

1—«
< h(C) > - T
& h(C) > B(1 = BrolC]).

200 (1_ 2c0 r0|C|)

(2) [Case I : C is a linear code.] Since u € T' C C, we have pr(a,u)(C) =
BxuGsP = B9, Thus, by Theorem 12 (c), we have

1—
pria,u)(€) > 1 - —he
1—
o Ba®>1- 2 "%p,
«
> 1— Ba
& he 2 7——(1 - fa’™)
1
& he 2 51— pa®).
[Case II : C is a nonlinear code.] Since, rg > r1 > -+ > 1, by Theorem 2
(iii), we have pr(a, u)(C) = BxuGsP < Bro|C|. Thus, by Theorem 12 (c), we
have
1_—
prio,u)(€) = 1~ —=he
& Brolc] > 1~ —he
(0]
& he > T (1= BrolCl)
—

& he > (1~ rolC])
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